Home
Class 12
CHEMISTRY
Calculate value of E(Ce^(4+)//Ce^(3+))^(...

Calculate value of `E_(Ce^(4+)//Ce^(3+))^(@)`. IF `E_("cell")^(@)` for the reaction, `2Ce^(4+)+Co rarr 2Ce^(3+)+Co^(2+)` is 1.89 V. If `E_(Co//Co^(2+))^(@)=-0.28V`

A

`-1.64V`

B

`+1.64V`

C

`-2.08V`

D

`+2.17V`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard reduction potential \( E^{\circ}_{Ce^{4+}/Ce^{3+}} \), we can use the given information about the cell reaction and the standard reduction potential of cobalt. Here are the steps to solve the problem: ### Step 1: Write the cell reaction The cell reaction is given as: \[ 2Ce^{4+} + Co \rightarrow 2Ce^{3+} + Co^{2+} \] ### Step 2: Identify the anode and cathode In this reaction: - Cobalt (Co) is being oxidized to \( Co^{2+} \), so it is the anode. - Cerium (\( Ce^{4+} \)) is being reduced to \( Ce^{3+} \), so it is the cathode. ### Step 3: Write the cell potential equation The standard cell potential \( E^{\circ}_{cell} \) can be expressed as: \[ E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} \] ### Step 4: Substitute known values We know: - \( E^{\circ}_{cell} = 1.89 \, V \) - The oxidation potential of cobalt \( E^{\circ}_{Co^{2+}/Co} = -0.28 \, V \) To find the reduction potential of cobalt, we convert the oxidation potential to reduction potential: \[ E^{\circ}_{Co^{2+}/Co} = +0.28 \, V \] ### Step 5: Set up the equation Now substituting the values into the cell potential equation: \[ 1.89 \, V = E^{\circ}_{Ce^{4+}/Ce^{3+}} - 0.28 \, V \] ### Step 6: Solve for \( E^{\circ}_{Ce^{4+}/Ce^{3+}} \) Rearranging the equation gives: \[ E^{\circ}_{Ce^{4+}/Ce^{3+}} = 1.89 \, V + 0.28 \, V \] \[ E^{\circ}_{Ce^{4+}/Ce^{3+}} = 2.17 \, V \] ### Conclusion The standard reduction potential \( E^{\circ}_{Ce^{4+}/Ce^{3+}} \) is: \[ \boxed{2.17 \, V} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the E_(cell)^(@) for the following cell reaction Fe^(+2)+Zn rarr Zn^(+2)+Fe Given E_(Zn//Zn^(+2))^(@)=0.76V,E_(Fe//Fe^(+2))^(@)=+0.41 V

Consider the following E^@ values . E_(Fe^(3+)//Fe^(2+)^@ = + 0.77 V , E_(Sn^(2+)//Sn)^@=- 0.14 V The E_(cell)^@ for the reaction , Sn (s) + 2Fe^(3+)(aq) rarr 2 Fe^(2+)(aq)+ Sn^(2+)(aq) is ? (a) -0.58 V (b) -0.30 V (c) +0.30V (d) +0.58 V

Calculate the equilibrium constant for the reaction : Fe^(2+)+Ce^(4+)hArr Fe^(3+)+Ce^(3+) Given, E_(Ca^(4+)//Ce^(3+))^(@)=1.44V and E_(Fe^(3+)//Fe^(2+))^(@)=0.68V

Under standered condition Delta G^(@) for the reaction 2Cr(s)= 3Cd^(2+)(aq) rarr 2Cr_((a a))^(3+) +3Cd(s) is (E_(Cr^(3+)//Cr)^(@) = - 0.74 V, E_(Cd^(2+)//Cd)^(@) = - 0.4 V)

2Ce^(4+) + Co rightarrow 2Ce^(3+) + Co^(2+), E_(cell)^(@) = 1.89V E_(Co^(2+)//Co)^(@) = -0.277V . Hence E_(Ce^(4+)//Ce^(3+))^(@) is

If E_(A^(+2)//A)^(@)=-0.30 V and E_(A^(+3)//A^(+2))^(@)=0.40 V, the standard Emf of the reaction: A+2A^(+3)to3A^(+2) will be :-

The e.m.f E_("cell")^(Theta) of the cell reaction 3Sn^(4+) +2Cr to 3Sn^(4+) +2Cr^(3+) is 0.89 V. Calculate Delta_(r )G^(Theta) for the reaction (F=96500"C mol"^(-1)) .

If E_(Fe^(2+))^(@)//Fe = -0.441 V and E_(Fe^(3+))^(@)//Fe^(2+) = 0.771 V The standard EMF of the reaction Fe+2Fe^(3+) rarr 3Fe^(2+) will be:

Calculate E_(cell) of the reaction {:(Mg(s),+2Ag^(+)to,Mg^(+2)+,2Ag(s),),(,(0.0001M),(0.100M),,):} If E_(cell)^(0)=3.17V

Calculate the value of E_("cell") at 298 K for the following cell: Al//Al^(3+) (0.01M)"||" Sn^(2+) (0.015 M)//Sn [E_(Al^(3+)//Al)^(Theta) = -1.66V and E_(Sn^(2+)//Sn)^(Theta) = -0.14V]