Home
Class 12
CHEMISTRY
Calculate the value of equilibrium const...

Calculate the value of equilibrium constant of the reaction at `227^(@)C`, If the `DeltaG^(@)` for the reaction `X+YhArrZ` is `-4.606" kcal"`.
`(R=2.0" cal. Mol"^(-1)K^(-1))`

A

100

B

10

C

2

D

0.01

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the equilibrium constant (K) for the reaction \( X + Y \rightleftharpoons Z \) at \( 227^\circ C \) given that \( \Delta G^\circ = -4.606 \, \text{kcal} \), we can use the relationship between Gibbs free energy and the equilibrium constant: \[ \Delta G^\circ = -RT \ln K \] ### Step 1: Convert the temperature to Kelvin The temperature in Celsius needs to be converted to Kelvin using the formula: \[ T(K) = T(°C) + 273.15 \] For \( 227^\circ C \): \[ T = 227 + 273.15 = 500.15 \, K \approx 500 \, K \] ### Step 2: Convert \( \Delta G^\circ \) from kcal to cal Since the value of \( R \) is given in cal, we need to convert \( \Delta G^\circ \) from kilocalories to calories: \[ \Delta G^\circ = -4.606 \, \text{kcal} \times 1000 \, \text{cal/kcal} = -4606 \, \text{cal} \] ### Step 3: Substitute values into the equation We can now substitute \( \Delta G^\circ \), \( R \), and \( T \) into the equation: \[ -4606 = -2.303 \times R \times T \times \log K \] Substituting \( R = 2.0 \, \text{cal/mol K} \) and \( T = 500 \, K \): \[ -4606 = -2.303 \times 2.0 \times 500 \times \log K \] ### Step 4: Simplify the equation Calculate the right side: \[ -4606 = -2.303 \times 1000 \times \log K \] This simplifies to: \[ -4606 = -2303 \log K \] ### Step 5: Solve for \( \log K \) Dividing both sides by -2303: \[ \log K = \frac{4606}{2303} \] Calculating this gives: \[ \log K \approx 2 \] ### Step 6: Convert from log to K To find \( K \), we convert from logarithmic form: \[ K = 10^{\log K} = 10^2 = 100 \] ### Final Answer Thus, the equilibrium constant \( K \) for the reaction at \( 227^\circ C \) is: \[ \boxed{100} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the values of equilibrium constant (K_C) and DeltaG^o for the following reaction :

The unit of equilibrium constant K_C of a reaction is "mol"^(-2) l^2 .For this reaction, the product concentration increases by

Calculate the value of equilibrium constant, K for the following reaction at 400 K. 2NOCl(g) hArr 2NO (g) + Cl_2(g) DeltaH^@ = 80.0 kJ mol^(-1), DeltaS^@ = 120 KJ^(-1) mol^(-1) at 400 K, R = 8.31 JK^(-1) mol^(-1) .

Delta G^(@) for the reaction X+Y hArr Z is -4.606 kcal. The value of equilibrium constant of the reaction at 227^(@)C is (R = 2 Cal/mol K)

For the reaction, 2NOCl(g) hArr 2NO(g)+Cl_(2)(g) Calculate the standard equilibrium constant at 298 K . Given that the value of DeltaH^(ɵ) and DeltaS^(ɵ) of the reaction at 298 K are 77.2 kJ mol^(-1) and 122 J K^(-1) mol^(-1) .

Determine the values of equilibrium constant (K_(c)) and DeltaG^(@) for the reaction Ni(s)+2Ag^(+)(aq)rarrNi^(2+)(aq)+2Ag(s), E^(@)=1.05 V. ( "Given " 1F=96500"C mol"^(-1))

The equilibrium constant K_(p) for the homogeneous reaction is 10^(-3) . The standard Gibbs free energy change DeltaG^(ɵ) for the reaction at 27^(@)C ("using" R=2 cal K^(-1) mol^(-1)) is

The equilibrium constant K_(p) for a homogeneous gaseous reaction is 10^(-8) . The standard Gibbs free energy change DeltaG^(ɵ) for the reaction ("using" R=2 cal K^(-1) mol^(-1)) is

Calculate the pressure of CO_(2) gas at 700 K in the heterogenous equilibrium reaction CaCO_(3)(s) hArr CaO(s)+CO_(2)(g), if DeltaG^(ɵ) for this reaction is 130.2 kJ mol^(-1) .

If for a reaction A(s) rarr 2B(g), deltaU+ 1.2 kcal and deltaS=40 cal K^(-1) at 400K then deltaG for the reaction will be ( R=2 cal mol^(-1)K^(-1)