Home
Class 12
MATHS
If A = int(0)^((pi)/(2))(sin^(3)x)/(1+co...

If `A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx`, then `(2A)/(B)` is equal to

A

`-2A`

B

4

C

2

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( A \) and \( B \) and then find the value of \( \frac{2A}{B} \). ### Step 1: Evaluate \( A \) Given: \[ A = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{1 + \cos^2 x} \, dx \] We can rewrite \( \sin^3 x \) as \( \sin x \cdot \sin^2 x \). Using the identity \( \sin^2 x = 1 - \cos^2 x \), we have: \[ \sin^3 x = \sin x (1 - \cos^2 x) \] Thus, we can express \( A \) as: \[ A = \int_{0}^{\frac{\pi}{2}} \frac{\sin x (1 - \cos^2 x)}{1 + \cos^2 x} \, dx \] ### Step 2: Change of Variable for \( A \) Let \( \cos x = t \). Then, \( -\sin x \, dx = dt \) or \( \sin x \, dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = 1 \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we can rewrite \( A \): \[ A = \int_{1}^{0} \frac{(1 - t^2)}{1 + t^2} (-dt) = \int_{0}^{1} \frac{1 - t^2}{1 + t^2} \, dt \] ### Step 3: Evaluate \( B \) Now, we evaluate \( B \): \[ B = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + \sin^2 x} \, dx \] We can rewrite \( \cos^2 x \) as \( \cos x \cdot \cos x \): \[ B = \int_{0}^{\frac{\pi}{2}} \frac{\cos x (1 - \sin^2 x)}{1 + \sin^2 x} \, dx \] ### Step 4: Change of Variable for \( B \) Let \( \sin x = t \). Then, \( \cos x \, dx = dt \). The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = \frac{\pi}{2} \), \( t = 1 \) Thus, we can rewrite \( B \): \[ B = \int_{0}^{1} \frac{(1 - t^2)}{1 + t^2} \, dt \] ### Step 5: Compare \( A \) and \( B \) Now we observe that both integrals \( A \) and \( B \) are equal: \[ A = \int_{0}^{1} \frac{1 - t^2}{1 + t^2} \, dt \] \[ B = \int_{0}^{1} \frac{1 - t^2}{1 + t^2} \, dt \] Thus, we have: \[ A = B \] ### Step 6: Calculate \( \frac{2A}{B} \) Now we can calculate: \[ \frac{2A}{B} = \frac{2A}{A} = 2 \] ### Final Answer Thus, the value of \( \frac{2A}{B} \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (a cos^(2) x+b sin^(2) x) dx

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

int_(0)^(pi//2) (dx)/(4sin^(2) x + 5 cos^(2)x)

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to: