Home
Class 12
MATHS
Consider a matrix A=[a(ij)[(3xx3) where,...

Consider a matrix `A=[a_(ij)[_(3xx3)` where, `a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):}`. If `b_(ij)` is the cafactor of `a_(ij)` in matrix A and `C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr)`, then det `[C_(ij)]_(3xx3)` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

A matrix A=[a_(ij)]_(mxxn) is

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

The square matrix A=[a_(ij)" given by "a_(ij)=(i-j)^3 , is a

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)