Home
Class 12
MATHS
The value of lim(xrarr(pi)/(6))(2cos(x+(...

The value of `lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx))` is equal to

A

`(1)/(2)`

B

`sqrt3`

C

`(sqrt3)/(4)`

D

`(sqrt3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is