Home
Class 12
MATHS
If the integral I=∫(-(sinx)/(x)-ln x cos...

If the integral `I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C` (where, C is the constant of integration) and `f(e )=-sine`, then the number of natural numbers less than `[f((pi)/(6))]` is equal to (where `[.]` is the greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( -\frac{\sin x}{x} - \ln x \cos x \right) dx = f(x) + C \), where \( C \) is the constant of integration and \( f(e) = -\sin e \), we need to find the value of \( f\left(\frac{\pi}{6}\right) \) and then determine the number of natural numbers less than \( [f\left(\frac{\pi}{6}\right)] \). ### Step 1: Find the expression for \( f(x) \) From the integral, we can separate it into two parts: \[ I = -\int \frac{\sin x}{x} \, dx - \int \ln x \cos x \, dx \] Let’s denote: \[ f(x) = -\int \frac{\sin x}{x} \, dx - \int \ln x \cos x \, dx + C \] ### Step 2: Evaluate \( f(e) \) We know that \( f(e) = -\sin e \). This gives us a condition to find the constant \( C \) later. ### Step 3: Evaluate \( f\left(\frac{\pi}{6}\right) \) Now we need to find \( f\left(\frac{\pi}{6}\right) \): \[ f\left(\frac{\pi}{6}\right) = -\int \frac{\sin\left(\frac{\pi}{6}\right)}{\frac{\pi}{6}} \, dx - \int \ln\left(\frac{\pi}{6}\right) \cos\left(\frac{\pi}{6}\right) \, dx \] Calculating \( \sin\left(\frac{\pi}{6}\right) \) and \( \cos\left(\frac{\pi}{6}\right) \): \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ f\left(\frac{\pi}{6}\right) = -\int \frac{\frac{1}{2}}{\frac{\pi}{6}} \, dx - \int \ln\left(\frac{\pi}{6}\right) \cdot \frac{\sqrt{3}}{2} \, dx \] ### Step 4: Simplify the expression The first integral simplifies to: \[ -\int \frac{3}{\pi} \, dx = -\frac{3}{\pi} x \] The second integral becomes: \[ -\frac{\sqrt{3}}{2} \int \ln\left(\frac{\pi}{6}\right) \, dx = -\frac{\sqrt{3}}{2} \cdot \ln\left(\frac{\pi}{6}\right) \cdot x \] Combining these: \[ f\left(\frac{\pi}{6}\right) = -\left(\frac{3}{\pi} \cdot \frac{\pi}{6} + \frac{\sqrt{3}}{2} \cdot \ln\left(\frac{\pi}{6}\right) \cdot \frac{\pi}{6}\right) \] ### Step 5: Evaluate \( f\left(\frac{\pi}{6}\right) \) Calculating this gives: \[ f\left(\frac{\pi}{6}\right) = -\left(\frac{3}{2} + \frac{\sqrt{3}}{12} \cdot \ln\left(\frac{\pi}{6}\right)\right) \] ### Step 6: Find the greatest integer function Now we need to evaluate \( [f\left(\frac{\pi}{6}\right)] \). We need to find the numerical value of \( f\left(\frac{\pi}{6}\right) \) to determine how many natural numbers are less than this value. Assuming \( \ln\left(\frac{\pi}{6}\right) \) is a small negative number, we can estimate: \[ f\left(\frac{\pi}{6}\right) \approx -\left(\frac{3}{2} + \text{small positive value}\right) \] This indicates that \( f\left(\frac{\pi}{6}\right) \) is slightly less than -1. ### Conclusion Thus, the greatest integer less than \( f\left(\frac{\pi}{6}\right) \) is \( -2 \). Therefore, the number of natural numbers less than \( [f\left(\frac{\pi}{6}\right)] \) is: \[ \text{Natural numbers less than } -2 = 0 \] **Final Answer: 0**
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=lamdaln (x^(6)+1)+C , (where C is the constant of integration) then the value of (1)/(lambda) is

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to