Home
Class 12
MATHS
If the maximum value of x which satisfie...

If the maximum value of x which satisfies the inequality `sin^(-1)(sinx) ge cos^(-1)(sinx)" for "x in (pi)/(2), 2pi" is " lambda,` then `(2lambda)/(3)` is equal to (take `pi=3.14`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sin^{-1}(\sin x) \geq \cos^{-1}(\sin x) \) for \( x \) in the interval \( \left(\frac{\pi}{2}, 2\pi\right) \), we will follow these steps: ### Step 1: Understand the relationship between \( \sin^{-1} \) and \( \cos^{-1} \) We know that: \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \] for \( y \) in the range \([-1, 1]\). Thus, we can rewrite the inequality: \[ \sin^{-1}(\sin x) \geq \cos^{-1}(\sin x) \implies \sin^{-1}(\sin x) \geq \frac{\pi}{2} - \sin^{-1}(\sin x) \] ### Step 2: Rearranging the inequality Rearranging gives: \[ 2\sin^{-1}(\sin x) \geq \frac{\pi}{2} \] Dividing both sides by 2: \[ \sin^{-1}(\sin x) \geq \frac{\pi}{4} \] ### Step 3: Finding the range of \( \sin x \) The function \( \sin^{-1}(\sin x) \) is equal to \( x \) for \( x \) in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) and \( \pi - x \) for \( x \) in the range \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \). Therefore, we need to analyze the intervals: 1. For \( x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \): \[ \sin^{-1}(\sin x) = \pi - x \] 2. For \( x \in \left(\frac{3\pi}{2}, 2\pi\right) \): \[ \sin^{-1}(\sin x) = x - 2\pi \] ### Step 4: Solving the inequality Now we solve the inequality \( \sin^{-1}(\sin x) \geq \frac{\pi}{4} \). 1. For \( x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \): \[ \pi - x \geq \frac{\pi}{4} \implies x \leq \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] 2. For \( x \in \left(\frac{3\pi}{2}, 2\pi\right) \): \[ x - 2\pi \geq \frac{\pi}{4} \implies x \geq 2\pi + \frac{\pi}{4} \quad (\text{not valid in this interval}) \] ### Step 5: Finding the maximum value of \( x \) The maximum value of \( x \) satisfying the inequality in the interval \( \left(\frac{\pi}{2}, 2\pi\right) \) is \( \frac{3\pi}{4} \). ### Step 6: Assigning the value to \( \lambda \) Thus, we have: \[ \lambda = \frac{3\pi}{4} \] ### Step 7: Calculate \( \frac{2\lambda}{3} \) Now we need to calculate: \[ \frac{2\lambda}{3} = \frac{2 \cdot \frac{3\pi}{4}}{3} = \frac{2\cdot3\pi}{4\cdot3} = \frac{2\pi}{4} = \frac{\pi}{2} \] ### Step 8: Substitute \( \pi = 3.14 \) Now substituting \( \pi \): \[ \frac{\pi}{2} = \frac{3.14}{2} = 1.57 \] Thus, the final answer is: \[ \frac{2\lambda}{3} = 1.57 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of x which satisfies the inequality sin^(-1)x ge cos^(-1)x is lambda , then the value of 2lambda is (use sqrt2=1.41 )

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

Find the values of x in the interval [0,2pi] which satisfy the inequality: 3|2sinx-1|ge3+4cos^(2)x

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

The soluation set of inequality (sinx+cos^(- 1)x)-(cosx-sin^-1x)>= pi/2, is equal to

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

The complete set of values of x, x in (-(pi)/(2), pi) satisfying the inequality cos 2x gt |sin x| is :

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2