Home
Class 12
MATHS
Let O be an interior point of triangle A...

Let O be an interior point of triangle ABC, such that `2vec(OA)+3vec(OB)+4vec(OC)=0`, then the ratio of the area of `DeltaABC` to the area of `DeltaAOC` is

A

`3:1`

B

`3:2`

C

`2:1`

D

`4:3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the area of triangle ABC to the area of triangle AOC given the equation \(2\vec{OA} + 3\vec{OB} + 4\vec{OC} = 0\). ### Step-by-Step Solution: 1. **Understanding the given condition**: We have the equation \(2\vec{OA} + 3\vec{OB} + 4\vec{OC} = 0\). This can be rewritten in terms of the position vectors of points A, B, C, and O. \[ 2\vec{OA} + 3\vec{OB} + 4\vec{OC} = 0 \implies 2(\vec{O} - \vec{A}) + 3(\vec{O} - \vec{B}) + 4(\vec{O} - \vec{C}) = 0 \] Rearranging gives: \[ (2 + 3 + 4)\vec{O} - (2\vec{A} + 3\vec{B} + 4\vec{C}) = 0 \implies 9\vec{O} = 2\vec{A} + 3\vec{B} + 4\vec{C} \] Thus, we can express \(\vec{O}\) as: \[ \vec{O} = \frac{2\vec{A} + 3\vec{B} + 4\vec{C}}{9} \] 2. **Finding the area of triangle AOC**: The area of triangle AOC can be calculated using the formula for the area of a triangle formed by vectors. The area of triangle AOC is given by: \[ \text{Area of } \Delta AOC = \frac{1}{2} |\vec{OA} \times \vec{OC}| \] 3. **Finding the area of triangle ABC**: Similarly, the area of triangle ABC can be calculated as: \[ \text{Area of } \Delta ABC = \frac{1}{2} |\vec{AB} \times \vec{AC}| \] 4. **Using the ratios of the areas**: The ratio of the areas of triangles ABC and AOC can be derived from the coefficients in the expression for \(\vec{O}\). The coefficients of the vectors give us a way to relate the areas: \[ \text{Area of } \Delta ABC = \text{Area of } \Delta AOB + \text{Area of } \Delta AOC + \text{Area of } \Delta BOC \] From the coefficients, we can see that: \[ \text{Area of } \Delta AOB : \text{Area of } \Delta AOC : \text{Area of } \Delta BOC = 2 : 4 : 3 \] Thus, the area of triangle ABC can be expressed in terms of the area of triangle AOC: \[ \text{Area of } \Delta ABC = \text{Area of } \Delta AOC + \text{Area of } \Delta AOB + \text{Area of } \Delta BOC = 4k + 2k + 3k = 9k \] where \(k\) is the area of triangle AOC. 5. **Calculating the ratio**: Now we can find the ratio: \[ \frac{\text{Area of } \Delta ABC}{\text{Area of } \Delta AOC} = \frac{9k}{4k} = \frac{9}{4} \] ### Final Answer: The ratio of the area of triangle ABC to the area of triangle AOC is \( \frac{9}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let vec(A)D be the angle bisector of angle A" of " Delta ABC such that vec(A)D=alpha vec(A)B+beta vec(A)C, then

If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of Delta ABC is

If D is the mid point of side BC of a triangle ABC such that vec A B+ vec A C=lambda\ vec A D , write the value of lambdadot

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

Find the resultant of the three vectors vec(OA), vec(OB) and vec(OC) shown in figure. Radius of the circle is R.

Find the resultant of the three vectors vec(OA), vec(OB) and vec(OC) shown in figure. Radius of the circle is R.

Find the resultant of the three vectors vec(OA), vec(OB) and vec(OC) shown in figure. Radius of the circle is R.

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is