Home
Class 12
MATHS
Let alpha,beta, gamma be three real numb...

Let `alpha,beta, gamma` be three real numbers satisfying `[(alpha,beta,gamma)][(2,-1,1),(-1,-1,-2),(-1,2,1)]=[(0,0,0)]`. If the point `A(alpha, beta, gamma)` lies on the plane `2x+y+3z=2`, then `3alpha+3beta-6gamma` is equal to

A

0

B

`-(1)/(3)`

C

1

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given instructions and derive the necessary equations. ### Step 1: Set up the matrix equation We have the matrix equation: \[ \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ -1 & -1 & -2 \\ -1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] ### Step 2: Multiply the matrices We will multiply the row matrix \((\alpha, \beta, \gamma)\) with each column of the given matrix: 1. First column: \[ 2\alpha - \beta + \gamma = 0 \] 2. Second column: \[ -\alpha - \beta + 2\gamma = 0 \] 3. Third column: \[ -\alpha + 2\beta + \gamma = 0 \] ### Step 3: Write the equations From the multiplication, we have the following system of equations: 1. \(2\alpha - \beta + \gamma = 0\) (Equation 1) 2. \(-\alpha - \beta + 2\gamma = 0\) (Equation 2) 3. \(-\alpha + 2\beta + \gamma = 0\) (Equation 3) ### Step 4: Solve the equations We will solve these equations step by step. **From Equation 1:** \[ \gamma = -2\alpha + \beta \quad \text{(Rearranging Equation 1)} \] **Substituting \(\gamma\) into Equation 2:** \[ -\alpha - \beta + 2(-2\alpha + \beta) = 0 \] \[ -\alpha - \beta - 4\alpha + 2\beta = 0 \] \[ -5\alpha + \beta = 0 \quad \Rightarrow \quad \beta = 5\alpha \quad \text{(Equation 4)} \] **Substituting \(\beta\) into Equation 1:** \[ 2\alpha - (5\alpha) + \gamma = 0 \] \[ -3\alpha + \gamma = 0 \quad \Rightarrow \quad \gamma = 3\alpha \quad \text{(Equation 5)} \] ### Step 5: Substitute into the plane equation We know that point \(A(\alpha, \beta, \gamma)\) lies on the plane \(2x + y + 3z = 2\). Substituting \(\beta\) and \(\gamma\) from Equations 4 and 5: \[ 2\alpha + 5\alpha + 3(3\alpha) = 2 \] \[ 2\alpha + 5\alpha + 9\alpha = 2 \] \[ 16\alpha = 2 \quad \Rightarrow \quad \alpha = \frac{1}{8} \] ### Step 6: Find \(\beta\) and \(\gamma\) Using \(\alpha\) to find \(\beta\) and \(\gamma\): \[ \beta = 5\alpha = 5 \times \frac{1}{8} = \frac{5}{8} \] \[ \gamma = 3\alpha = 3 \times \frac{1}{8} = \frac{3}{8} \] ### Step 7: Calculate \(3\alpha + 3\beta - 6\gamma\) Now we can find \(3\alpha + 3\beta - 6\gamma\): \[ 3\alpha + 3\beta - 6\gamma = 3\left(\frac{1}{8}\right) + 3\left(\frac{5}{8}\right) - 6\left(\frac{3}{8}\right) \] \[ = \frac{3}{8} + \frac{15}{8} - \frac{18}{8} \] \[ = \frac{3 + 15 - 18}{8} = \frac{0}{8} = 0 \] ### Final Answer Thus, \(3\alpha + 3\beta - 6\gamma = 0\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If A= [(alpha,beta),(gamma,-alpha)] is such that A^(2)=1 , then

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

if alpha, beta, gamma are the roots of equation x^3-x-1=0 , then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

Let alpha,beta "and " gamma are three distinct roots of |{:(x-1,-6,2),(-6,x-2,-4),(2,-4,x-6):}| =0 the value of ((1)/(alpha)+(1)/(beta)+(1)/(gamma))^(-1) is