Home
Class 12
MATHS
The value of Sigma(i=1)^(n)(.^(n+1)C(i)-...

The value of `Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i))` is equal to

A

`2^(n)`

B

`2^(n)+1`

C

`3.2^(n)`

D

`2^(n)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ S_n = \sum_{i=1}^{n} \left( \binom{n+1}{i} - \binom{n}{i} \right) \] ### Step-by-Step Solution: 1. **Rewrite the Summation**: We can break down the summation into two parts: \[ S_n = \sum_{i=1}^{n} \binom{n+1}{i} - \sum_{i=1}^{n} \binom{n}{i} \] 2. **Evaluate Each Summation**: - The first summation, \(\sum_{i=1}^{n} \binom{n+1}{i}\), can be evaluated using the binomial theorem. According to the binomial theorem: \[ (1 + x)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} x^k \] Setting \(x = 1\): \[ 2^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} \] Therefore: \[ \sum_{i=1}^{n} \binom{n+1}{i} = 2^{n+1} - \binom{n+1}{0} - \binom{n+1}{n+1} = 2^{n+1} - 1 - 1 = 2^{n+1} - 2 \] - The second summation, \(\sum_{i=1}^{n} \binom{n}{i}\), can also be evaluated similarly: \[ (1 + x)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^k \] Setting \(x = 1\): \[ 2^{n} = \sum_{k=0}^{n} \binom{n}{k} \] Therefore: \[ \sum_{i=1}^{n} \binom{n}{i} = 2^{n} - \binom{n}{0} = 2^{n} - 1 \] 3. **Combine the Results**: Now we can substitute back into our expression for \(S_n\): \[ S_n = (2^{n+1} - 2) - (2^{n} - 1) \] Simplifying this gives: \[ S_n = 2^{n+1} - 2 - 2^{n} + 1 = 2^{n+1} - 2^{n} - 1 \] Factoring out \(2^{n}\): \[ S_n = 2^{n}(2 - 1) - 1 = 2^{n} - 1 \] 4. **Final Result**: Thus, the value of the summation is: \[ S_n = 2^{n} - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

The value of Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equal to

The value of i^n + i^-n

The value of sum_(i=0)^(n)""^(n-i)C_(r),rin[1,n]capsquare is equal to :

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .