Home
Class 12
MATHS
If the integral int(0)^(2)(dx)/(sinx+sin...

If the integral `int_(0)^(2)(dx)/(sinx+sin(2-x))=A`, then the integral `beta=int_(0)^(2)(xdx)/(sinx+sin(2-x))` is equal to

A

`(sin2)A`

B

2A

C

A

D

`(A)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \beta = \int_{0}^{2} \frac{x \, dx}{\sin x + \sin(2 - x)} \] given that \[ A = \int_{0}^{2} \frac{dx}{\sin x + \sin(2 - x)}. \] ### Step 1: Understanding the Integral We start with the integral \( A \): \[ A = \int_{0}^{2} \frac{dx}{\sin x + \sin(2 - x)}. \] ### Step 2: Using Symmetry Notice that \( \sin(2 - x) = \sin x \) due to the sine function's periodicity and symmetry. Thus, we can rewrite the integral: \[ A = \int_{0}^{2} \frac{dx}{\sin x + \sin(2 - x)} = \int_{0}^{2} \frac{dx}{\sin x + \sin x} = \int_{0}^{2} \frac{dx}{2 \sin x}. \] ### Step 3: Setting Up the Integral for \(\beta\) Now, we will evaluate \( \beta \): \[ \beta = \int_{0}^{2} \frac{x \, dx}{\sin x + \sin(2 - x)}. \] ### Step 4: Change of Variable We can use the substitution \( x = 2 - u \). Then, \( dx = -du \), and the limits change as follows: - When \( x = 0 \), \( u = 2 \). - When \( x = 2 \), \( u = 0 \). Thus, we have: \[ \beta = \int_{2}^{0} \frac{(2 - u)(-du)}{\sin(2 - u) + \sin u} = \int_{0}^{2} \frac{(2 - u) \, du}{\sin(2 - u) + \sin u}. \] ### Step 5: Simplifying the Integral Now we can express the integral: \[ \beta = \int_{0}^{2} \frac{(2 - u) \, du}{\sin(2 - u) + \sin u} = \int_{0}^{2} \frac{2 \, du}{\sin(2 - u) + \sin u} - \int_{0}^{2} \frac{u \, du}{\sin(2 - u) + \sin u}. \] Notice that the second integral is just \( \beta \): \[ \beta = 2 \int_{0}^{2} \frac{du}{\sin(2 - u) + \sin u} - \beta. \] ### Step 6: Solving for \(\beta\) Adding \( \beta \) to both sides gives: \[ 2\beta = 2A \implies \beta = A. \] ### Final Result Thus, we conclude that: \[ \beta = A. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int(2sinx)/(3+sin2x)dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

int_(0)^(pi/2)cos^2x sin^2xdx

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

Evaluate : int(dx)/(sinx+sin2x)

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Evaluate. int(dx)/(sinx+sin2x)

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to