Home
Class 12
MATHS
If the reciprocals of 2, log((3^(x)-4))4...

If the reciprocals of 2, `log_((3^(x)-4))4 and log_(3^(x)+(7)/(2))4` are in arithmetic progression, then x is equal to

A

1

B

2

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the reciprocals of \( 2 \), \( \log_{(3^x - 4)} 4 \), and \( \log_{(3^x + \frac{7}{2})} 4 \) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Identify the Reciprocals**: The reciprocals we are considering are: \[ \frac{1}{2}, \quad \frac{1}{\log_{(3^x - 4)} 4}, \quad \frac{1}{\log_{(3^x + \frac{7}{2})} 4} \] 2. **Set Up the Arithmetic Progression Condition**: For three numbers \( a, b, c \) to be in AP, the condition is: \[ 2b = a + c \] Applying this to our reciprocals: \[ 2 \cdot \frac{1}{\log_{(3^x - 4)} 4} = \frac{1}{2} + \frac{1}{\log_{(3^x + \frac{7}{2})} 4} \] 3. **Clear the Fractions**: Multiply through by \( 2 \log_{(3^x - 4)} 4 \cdot \log_{(3^x + \frac{7}{2})} 4 \): \[ 2 \cdot 2 \log_{(3^x + \frac{7}{2})} 4 = \log_{(3^x - 4)} 4 + 2 \log_{(3^x - 4)} 4 \] 4. **Use Logarithmic Properties**: Recall that \( \log_a b = \frac{1}{\log_b a} \): \[ \log_{(3^x - 4)} 4 = \frac{1}{\log_4 (3^x - 4)} \quad \text{and} \quad \log_{(3^x + \frac{7}{2})} 4 = \frac{1}{\log_4 (3^x + \frac{7}{2})} \] 5. **Rewrite the Equation**: The equation becomes: \[ 2 \cdot \log_4 (3^x + \frac{7}{2}) = \log_4 (3^x - 4) + \log_4 (3^x + \frac{7}{2}) \] 6. **Combine Logarithms**: Using the property \( \log_a b + \log_a c = \log_a (bc) \): \[ \log_4 (3^x + \frac{7}{2}) = \log_4 (3^x - 4) + \log_4 (3^x + \frac{7}{2}) \] 7. **Set the Arguments Equal**: Since the bases are the same, we can equate the arguments: \[ (3^x - 4)(3^x + \frac{7}{2}) = 4 \] 8. **Expand and Rearrange**: Expanding gives: \[ 3^{2x} + \frac{7}{2} \cdot 3^x - 12 = 4 \] Rearranging leads to: \[ 3^{2x} + \frac{7}{2} \cdot 3^x - 16 = 0 \] 9. **Substitute \( t = 3^x \)**: Let \( t = 3^x \): \[ t^2 + \frac{7}{2} t - 16 = 0 \] 10. **Multiply by 2 to Clear the Fraction**: \[ 2t^2 + 7t - 32 = 0 \] 11. **Use the Quadratic Formula**: The quadratic formula is given by: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2, b = 7, c = -32 \): \[ t = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 2 \cdot (-32)}}{2 \cdot 2} \] \[ t = \frac{-7 \pm \sqrt{49 + 256}}{4} \] \[ t = \frac{-7 \pm \sqrt{305}}{4} \] 12. **Find Possible Values for \( t \)**: Calculate the roots: \[ t_1 = \frac{-7 + \sqrt{305}}{4}, \quad t_2 = \frac{-7 - \sqrt{305}}{4} \] Since \( t = 3^x \) must be positive, we only consider \( t_1 \). 13. **Solve for \( x \)**: Taking logarithm: \[ 3^x = \frac{-7 + \sqrt{305}}{4} \] \[ x = \log_3 \left( \frac{-7 + \sqrt{305}}{4} \right) \] ### Final Result: The value of \( x \) is: \[ x = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_3 2,(log)_3(2^x-5) and (log)_3(2^x-7/2) are in arithmetic progression, determine the value of xdot

If (log)_3 2,(log)_3(2^x-5)a n d(log)_3(2^x-7/2) are in arithmetic progression, determine the value of xdot

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

Solve log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1 .

If 1, log_3sqrt(3^(1-x)+2), log_3 (4*3^x-1) are in AP then x equals

Solve log_(4)(x-1)= log_(2) (x-3) .

If x=-2 , then the value of "log"_(4)((x^(2))/(4)) -2 "log"_(4)(4x^(4)), is

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}

Solve log_(2)((4)/(x+3))>log_(2)(2-x)

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to