Home
Class 12
MATHS
The number of triplets (a, b, c) of posi...

The number of triplets (a, b, c) of positive integers satisfying the equation `|(a^(3)+1,a^(2)b,a^(2)c),(ab^(2),b^(3)+1,b^(2)c),(ac^(2),bc^(2),c^(3)+1)|=30` is equal to

A

3

B

6

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of triplets \((a, b, c)\) of positive integers that satisfy the equation given by the determinant: \[ |(a^3 + 1, a^2b, a^2c), (ab^2, b^3 + 1, b^2c), (ac^2, bc^2, c^3 + 1)| = 30 \] ### Step 1: Simplifying the Determinant We can simplify the determinant by factoring out \(a\), \(b\), and \(c\) from the respective columns. This gives us: \[ abc \cdot |(a^2 + \frac{1}{a}, ab, ac), (b^2, b^2 + \frac{1}{b}, bc), (c^2, bc, c^2 + \frac{1}{c})| = 30 \] ### Step 2: Rewriting the Determinant Now we can rewrite the determinant as: \[ |(a^2 + \frac{1}{a}, ab, ac), (b^2, b^2 + \frac{1}{b}, bc), (c^2, bc, c^2 + \frac{1}{c})| \] ### Step 3: Elementary Row Operations Next, we can perform elementary row operations to simplify the determinant further. We will add the rows together to create a simpler form: 1. Add the three rows together. 2. This results in a new first row of the form: \[ (a^2 + b^2 + c^2 + 1, ab + ab + ac, ac + bc + c^2 + 1) \] ### Step 4: Factor Out Common Terms We can factor out \(a^2 + b^2 + c^2 + 1\) from the first row, which leads us to: \[ (a^2 + b^2 + c^2 + 1) \cdot |(1, 1, 1), (b^2, b^2 + 1, b^2), (c^2, c^2, c^2 + 1)| = 30 \] ### Step 5: Evaluating the Simplified Determinant Now we can evaluate the determinant on the right. The determinant simplifies to: \[ (a^2 + b^2 + c^2 + 1) \cdot (1 \cdot (b^2(c^2 + 1) - b^2(c^2)) - 1 \cdot (b^2 - b^2)) = 30 \] This gives us: \[ (a^2 + b^2 + c^2 + 1) = 30 \] ### Step 6: Solving for Triplets Now we need to solve the equation: \[ a^2 + b^2 + c^2 = 29 \] ### Step 7: Finding Positive Integer Solutions We need to find all combinations of positive integers \(a\), \(b\), and \(c\) such that their squares sum to 29. 1. **Possible values for \(a\)**: - \(a = 1 \Rightarrow b^2 + c^2 = 28\) - \(a = 2 \Rightarrow b^2 + c^2 = 25\) - \(a = 3 \Rightarrow b^2 + c^2 = 20\) - \(a = 4 \Rightarrow b^2 + c^2 = 13\) - \(a = 5 \Rightarrow b^2 + c^2 = 4\) - \(a = 6 \Rightarrow b^2 + c^2 = -7\) (not possible) 2. **Finding pairs \((b, c)\)** for each case: - For \(a = 1\): Possible pairs are \((5, 1)\), \((1, 5)\), \((4, 4)\). - For \(a = 2\): Possible pairs are \((5, 0)\), \((0, 5)\) (not valid as they must be positive). - For \(a = 3\): Possible pairs are \((4, 2)\), \((2, 4)\), \((3, 3)\). - For \(a = 4\): Possible pairs are \((3, 2)\), \((2, 3)\), \((1, 3)\), \((3, 1)\). - For \(a = 5\): Possible pairs are \((2, 0)\), \((0, 2)\) (not valid). ### Step 8: Counting Unique Triplets Count the unique permutations of the valid triplets: - From \((1, 5, 1)\): 3 permutations. - From \((3, 4, 2)\): 6 permutations. - From \((4, 4, 1)\): 3 permutations. ### Conclusion The total number of unique triplets \((a, b, c)\) that satisfy the equation is \(3 + 6 + 3 = 12\). ### Final Answer The number of triplets \((a, b, c)\) of positive integers satisfying the equation is equal to **12**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1):}|=0 then

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Which of the following is equivalent to (2b^(3)c^(2)+b^(2)c)-(b^(3)c^(2)-b^(2)c-4bc) ?

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|