Home
Class 12
MATHS
Let f:(6, 8)rarr (9, 11) be a function d...

Let `f:(6, 8)rarr (9, 11)` be a function defined as `f(x)=x+[(x)/(2)]` (where `[.]` denotes the greatest integer function), then `f^(-1)(x)` is equal to

A

`x-[(x)/(2)]`

B

`-x-3`

C

`x-3`

D

`(1)/(x+[(x)/(2)])`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x + \left\lfloor \frac{x}{2} \right\rfloor \) defined on the interval \( (6, 8) \), we will follow these steps: ### Step 1: Determine the value of \( \left\lfloor \frac{x}{2} \right\rfloor \) Given the domain \( 6 < x < 8 \), we can calculate \( \frac{x}{2} \): - For \( x = 6 \), \( \frac{6}{2} = 3 \) - For \( x = 8 \), \( \frac{8}{2} = 4 \) Thus, \( \frac{x}{2} \) lies in the interval \( (3, 4) \). The greatest integer function \( \left\lfloor \frac{x}{2} \right\rfloor \) will therefore be: \[ \left\lfloor \frac{x}{2} \right\rfloor = 3 \] for all \( x \) in the interval \( (6, 8) \). ### Step 2: Rewrite the function \( f(x) \) Substituting \( \left\lfloor \frac{x}{2} \right\rfloor \) into the function: \[ f(x) = x + 3 \] ### Step 3: Find the range of \( f(x) \) Now, we need to find the range of \( f(x) \) for \( x \) in \( (6, 8) \): - When \( x = 6 \), \( f(6) = 6 + 3 = 9 \) - When \( x = 8 \), \( f(8) = 8 + 3 = 11 \) Thus, the range of \( f(x) \) is \( (9, 11) \). ### Step 4: Set up the equation for the inverse function To find the inverse function \( f^{-1}(x) \), we set: \[ y = f(x) = x + 3 \] We need to express \( x \) in terms of \( y \): \[ y = x + 3 \implies x = y - 3 \] ### Step 5: Write the inverse function Thus, the inverse function is: \[ f^{-1}(x) = x - 3 \] ### Conclusion The inverse function \( f^{-1}(x) \) is: \[ \boxed{x - 3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f : [2, 4) rarr [1, 3) be a function defined by f(x) = x - [(x)/(2)] (where [.] denotes the greatest integer function). Then f^(-1) equals

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[dot] denotes the greatest integer function, then f^(-1)(x) is equal to (A) x-2 (B) x-[x//2] (C) -x-2 (D) none of these

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The function defined by f(x) =(-1)^([x^(3)]) ([.] denotes the greatest integer function ) satidfies