Home
Class 12
MATHS
Let f(x+y)=f(x)f(y) for all x, y epsilon...

Let `f(x+y)=f(x)f(y)` for all `x, y epsilon R` and `f(x)=1+x phi (x) l n 2` where `lim_(xto0)phi(x)=1` then `f,(x)` is

A

f(x)

B

[f(x)]^(2)`

C

`g(x)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and f(x)=1+xg(x) where underset(x to 0)lim g(x)=1 . Then f'(x) is equal to

Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in R "If "f(x)=1+xg(x),log_(e)2, "where "lim_(x to 0) g(x)=1. "Then, f'(x)=

Let f(x+y) + f(x-y) = 2f(x)f(y) for x, y in R and f(0) != 0 . Then f(x) must be

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

Let f(x+y)=f(x)f(y) for all x,y in R and f(0)!=0 . Let phi(x)=f(x)/(1+f(x)^2) . Then prove that phi(x)-phi(-x)=0

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,y in R "If "f(x)=1+xg(x)+x^(2) g(x) phi(x)"such that "lim_(x to 0) g(x)=a and lim_(x to 0) phi(x)=b, then f'(x) is equal to

Let f:R to R be a function satisfying f(x+y)=f(x)+f(y)"for all "x,y in R "If "f(x)=x^(3)g(x)"for all "x,yin R , where g(x) is continuous, then f'(x) is equal to

Let f(x+y) = f(x) f(y) and f(x) = 1 + x g(x) G(x) where lim_(x->0) g(x) =a and lim_(x->o) G(x) = b. Then f'(x) is