Home
Class 12
MATHS
Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a...

Let `A=[(x,2,-3),(-1,3,-2),(2,-1,1)]` be a matrix and `|adj(adjA)|=(12)^(4)`, then the sum of all the values of x is equal to

A

`-24`

B

24

C

`-18`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) in the matrix \( A \) such that \( |adj(adjA)| = (12)^4 \). Let's go through the solution step by step. ### Step 1: Understanding the relationship between the adjoint and determinant We know that for any square matrix \( A \) of order \( n \): \[ |adj(A)| = |A|^{n-1} \] For our matrix \( A \), which is \( 3 \times 3 \) (so \( n = 3 \)): \[ |adj(A)| = |A|^{3-1} = |A|^2 \] ### Step 2: Finding \( |adj(adjA)| \) Using the property of the adjoint again: \[ |adj(adjA)| = |adj(A)|^{n-1} = |adj(A)|^{2} \] Substituting the expression we found earlier: \[ |adj(adjA)| = (|A|^2)^2 = |A|^4 \] ### Step 3: Setting up the equation We are given that: \[ |adj(adjA)| = (12)^4 \] Thus, we can equate: \[ |A|^4 = (12)^4 \] Taking the fourth root of both sides gives us: \[ |A| = 12 \quad \text{or} \quad |A| = -12 \] Since the determinant can be negative or positive, we can consider both cases. ### Step 4: Finding the determinant of matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} x & 2 & -3 \\ -1 & 3 & -2 \\ 2 & -1 & 1 \end{pmatrix} \] We calculate the determinant \( |A| \) using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ |A| = x \begin{vmatrix} 3 & -2 \\ -1 & 1 \end{vmatrix} - 2 \begin{vmatrix} -1 & -2 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 3 & -2 \\ -1 & 1 \end{vmatrix} = (3)(1) - (-2)(-1) = 3 - 2 = 1 \) 2. \( \begin{vmatrix} -1 & -2 \\ 2 & 1 \end{vmatrix} = (-1)(1) - (-2)(2) = -1 + 4 = 3 \) 3. \( \begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} = (-1)(-1) - (3)(2) = 1 - 6 = -5 \) Substituting back into the determinant formula: \[ |A| = x(1) - 2(3) - 3(-5) = x - 6 + 15 = x + 9 \] ### Step 5: Setting up the equations Now we have: \[ |A| = x + 9 \] We set this equal to the two cases we derived: 1. \( x + 9 = 12 \) 2. \( x + 9 = -12 \) ### Step 6: Solving for \( x \) 1. From \( x + 9 = 12 \): \[ x = 12 - 9 = 3 \] 2. From \( x + 9 = -12 \): \[ x = -12 - 9 = -21 \] ### Step 7: Finding the sum of all values of \( x \) Now we sum the values obtained: \[ 3 + (-21) = -18 \] ### Final Answer The sum of all the values of \( x \) is: \[ \boxed{-18} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

Let A=[(-1,2,-3),(-2,0,3),(3,-3,1)] be a mstrix, then |A|adj(A^(-1)) is equal to

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and det. (B)=4 , then the value of x is ______ .

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

If matrix A=[(2,2),(2,3)] then the value of [adj. A] equals to :

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is