Home
Class 12
MATHS
Consider the integral I(n)=int(0)^((n)/(...

Consider the integral `I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx`, then the value of `I_(20)-I_(19)` is

A

`(1)/(20)`

B

`(-1)/(19)`

C

`(-1)/(25)`

D

`(1)/(19)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_0^{\frac{n}{4}} \frac{\sin((2n-1)x)}{\sin x} \, dx \) and find the value of \( I_{20} - I_{19} \), we can follow these steps: ### Step 1: Write the expressions for \( I_{20} \) and \( I_{19} \) We start by substituting \( n = 20 \) and \( n = 19 \) into the integral. \[ I_{20} = \int_0^{\frac{20}{4}} \frac{\sin(39x)}{\sin x} \, dx = \int_0^{5} \frac{\sin(39x)}{\sin x} \, dx \] \[ I_{19} = \int_0^{\frac{19}{4}} \frac{\sin(37x)}{\sin x} \, dx = \int_0^{\frac{19}{4}} \frac{\sin(37x)}{\sin x} \, dx \] ### Step 2: Express \( I_{20} - I_{19} \) Now we can express \( I_{20} - I_{19} \): \[ I_{20} - I_{19} = \int_0^{5} \frac{\sin(39x)}{\sin x} \, dx - \int_0^{\frac{19}{4}} \frac{\sin(37x)}{\sin x} \, dx \] ### Step 3: Combine the integrals We can combine these integrals into a single integral: \[ I_{20} - I_{19} = \int_{\frac{19}{4}}^{5} \frac{\sin(39x)}{\sin x} \, dx + \int_0^{\frac{19}{4}} \left( \frac{\sin(39x)}{\sin x} - \frac{\sin(37x)}{\sin x} \right) dx \] ### Step 4: Simplify the difference of sine functions Using the identity for the difference of sine functions: \[ \sin A - \sin B = 2 \sin\left(\frac{A-B}{2}\right) \cos\left(\frac{A+B}{2}\right) \] We have: \[ \frac{\sin(39x) - \sin(37x)}{\sin x} = \frac{2 \sin(x) \cos(38x)}{\sin x} = 2 \cos(38x) \] ### Step 5: Evaluate the integral Now we can evaluate: \[ I_{20} - I_{19} = \int_0^{\frac{19}{4}} 2 \cos(38x) \, dx \] The integral of \( \cos(38x) \) is: \[ \int \cos(38x) \, dx = \frac{1}{38} \sin(38x) \] Thus, we have: \[ I_{20} - I_{19} = 2 \left[ \frac{1}{38} \sin(38x) \right]_0^{\frac{19}{4}} \] Calculating the limits: \[ = 2 \cdot \frac{1}{38} \left( \sin\left(38 \cdot \frac{19}{4}\right) - \sin(0) \right) \] ### Step 6: Simplify the sine term The sine term simplifies to: \[ \sin\left( \frac{19 \cdot 38}{4} \right) = \sin\left( \frac{19 \cdot 38}{4} \right) = \sin\left( 19 \cdot 9.5 \right) = \sin(180) = 0 \] Thus: \[ I_{20} - I_{19} = 2 \cdot \frac{1}{38} \cdot 0 = 0 \] ### Final Result The value of \( I_{20} - I_{19} \) is: \[ \boxed{-\frac{1}{19}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I=int_(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx , then the value of (sqrt(2)-1)I is_______

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

If I_(n)=(d^(n))/(dx^(n))(x^(n)lnx) , then the value of (1)/(50)(I_(7)-7I_(6)) is equal to