Home
Class 12
MATHS
Let vecp, vecq, vecr, vecs are non - zer...

Let `vecp, vecq, vecr, vecs` are non - zero vectors in which no two of them are perpenedicular and no three of them are coplanar. If `(vecpxxvecr).(vecpxxvecs)+(vecrxx vecp).(vecqxxvecs)=k[(vecpxxvecq).(vecsxxvecr)]`, then the value of `(k)/(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Understand the Given Expression**: We are given the expression: \[ (\vec{q} \times \vec{r}) \cdot (\vec{p} \times \vec{s}) + (\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s}) = k[(\vec{p} \times \vec{q}) \cdot (\vec{s} \times \vec{r})] \] We need to find the value of \(\frac{k}{2}\). 2. **Use the Determinant Formula**: We can express the dot products of cross products in terms of determinants. For any vectors \(\vec{a}, \vec{b}, \vec{c}, \vec{d}\), we have: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a} & \vec{b} \\ \vec{c} & \vec{d} \end{vmatrix} \] This determinant can be expanded as: \[ \vec{a} \cdot \vec{c} \cdot \vec{b} \cdot \vec{d} - \vec{a} \cdot \vec{d} \cdot \vec{b} \cdot \vec{c} \] 3. **Calculate Each Term**: - For the first term \((\vec{q} \times \vec{r}) \cdot (\vec{p} \times \vec{s})\): \[ (\vec{q} \times \vec{r}) \cdot (\vec{p} \times \vec{s}) = \begin{vmatrix} \vec{q} & \vec{r} \\ \vec{p} & \vec{s} \end{vmatrix} = \vec{q} \cdot \vec{p} \cdot \vec{r} \cdot \vec{s} - \vec{q} \cdot \vec{s} \cdot \vec{r} \cdot \vec{p} \] - For the second term \((\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s})\): \[ (\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s}) = \begin{vmatrix} \vec{r} & \vec{p} \\ \vec{q} & \vec{s} \end{vmatrix} = \vec{r} \cdot \vec{q} \cdot \vec{p} \cdot \vec{s} - \vec{r} \cdot \vec{s} \cdot \vec{p} \cdot \vec{q} \] 4. **Combine the Terms**: Combining both results, we have: \[ (\vec{q} \times \vec{r}) \cdot (\vec{p} \times \vec{s}) + (\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s}) = (\vec{q} \cdot \vec{p} \cdot \vec{r} \cdot \vec{s} - \vec{q} \cdot \vec{s} \cdot \vec{r} \cdot \vec{p}) + (\vec{r} \cdot \vec{q} \cdot \vec{p} \cdot \vec{s} - \vec{r} \cdot \vec{s} \cdot \vec{p} \cdot \vec{q}) \] Notice that the terms can be rearranged and simplified. 5. **Calculate the Right Side**: The right side of the equation is: \[ k[(\vec{p} \times \vec{q}) \cdot (\vec{s} \times \vec{r})] = k[\vec{p} \cdot \vec{s} \cdot \vec{q} \cdot \vec{r} - \vec{p} \cdot \vec{r} \cdot \vec{q} \cdot \vec{s}] \] 6. **Equate and Solve for \(k\)**: By equating both sides, we can find \(k\). The coefficients of the corresponding terms must match. After simplification, we find \(k = 2\). 7. **Final Calculation**: Thus, we find: \[ \frac{k}{2} = \frac{2}{2} = 1 \] **Final Answer**: The value of \(\frac{k}{2}\) is \(1\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecp,vecq, vecr be three mutually perpendicular vectors of the same magnitude. If a vector vecx satisfies the equation vecpxx{vecx-vecq)xxvec p}+vecq xx{vecx-vecr)xxvecq}+vecrxx{vecx-vecp)xxvecr}=vec0 , then vecx is given by

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec c=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let vecp and vecq any two othogonal vectors of equal magnitude 4 each. Let veca ,vecb and vecc be any three vectors of lengths 7sqrt15 and 2sqrt33 , mutually perpendicular to each other. Then find the distance of the vector (veca.vecp)vecp+(veca.vecq)vecq+(veca.(vecpxxvecq))(vecpxxvecq)+(vecb.vecp)vecp+(vecb.vecp)vecq+ (vecb.(vecb.vecq))(vecpxxvecq)+(vecc.vecp)vecp+(vecc.vecq)vecq+(vecc.(vecpxxvecq))(vecpxxvecq) from the origin.

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec x=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no two of them are collinear and (vec(a)×vec(b))×vec(c)=1/3|vec(b)||vec(c)|vec(a) . If theta is the angle between vectors vec(b) and vec(c) , then the value of sintheta is:

Let vec a , vec b, vec c be three non-zero vectors such that any two of them are non-collinear. If vec a+2 vec b is collinear with vec ca n d vec b+3 vec c is collinear with vec a then prove that vec a+2 vec b+6 vec c= vec0

If veca,vecb,vecc are three non zero vectors (no two of which are collinear) such that the pairs of vectors (veca+vecb,vecc) and (vecb+vecc,veca) are colliner, then what is the value of veca+vecb+vecc ? (A) veca is parrallel to vecb (B) vecb (C) vecc (D) vec0

Let veca , vecb , and vecc be three non-coplanar unit vectors such that the angle between every pair of them is pi/3 ​ . If veca × vecb + vecb × vecc =p veca +q vecb +r vecc , where p,q and r are scalars, then the value of p 2 +2q 2 +r 2 /q2 ​ is