Home
Class 12
MATHS
The range of the function y=2sin^(-1)[x^...

The range of the function `y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)]` is (where, `[.]` denotes the greatest integer function)

A

`(0, pi)`

B

`[pi, (3pi)/(2)]`

C

`{pi}`

D

`{pi, (3pi)/(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( y = 2 \sin^{-1}(x^2 + \frac{1}{2}) + \cos^{-1}(x^2 - \frac{1}{2}) \), we will analyze the components of the function step by step. ### Step 1: Determine the domain of the inverse sine and cosine functions. The function \( \sin^{-1}(u) \) is defined for \( -1 \leq u \leq 1 \), and \( \cos^{-1}(v) \) is also defined for \( -1 \leq v \leq 1 \). - For \( \sin^{-1}(x^2 + \frac{1}{2}) \): \[ -1 \leq x^2 + \frac{1}{2} \leq 1 \] This simplifies to: \[ -\frac{1}{2} \leq x^2 \leq \frac{1}{2} \] Since \( x^2 \) is always non-negative, we have: \[ 0 \leq x^2 \leq \frac{1}{2} \] Therefore, \( x \) can take values in the range: \[ -\sqrt{\frac{1}{2}} \leq x \leq \sqrt{\frac{1}{2}} \] - For \( \cos^{-1}(x^2 - \frac{1}{2}) \): \[ -1 \leq x^2 - \frac{1}{2} \leq 1 \] This simplifies to: \[ -\frac{1}{2} \leq x^2 \leq \frac{3}{2} \] Again, since \( x^2 \) is non-negative, we have: \[ 0 \leq x^2 \leq \frac{3}{2} \] Therefore, \( x \) can take values in the range: \[ -\sqrt{\frac{3}{2}} \leq x \leq \sqrt{\frac{3}{2}} \] ### Step 2: Analyze the function values. Now we will evaluate the function at the boundaries of the determined ranges. 1. **When \( x^2 = 0 \)**: \[ y = 2 \sin^{-1}(0 + \frac{1}{2}) + \cos^{-1}(0 - \frac{1}{2}) = 2 \sin^{-1}(\frac{1}{2}) + \cos^{-1}(-\frac{1}{2}) \] We know \( \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \) and \( \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3} \): \[ y = 2 \cdot \frac{\pi}{6} + \frac{2\pi}{3} = \frac{\pi}{3} + \frac{2\pi}{3} = \pi \] 2. **When \( x^2 = \frac{1}{2} \)**: \[ y = 2 \sin^{-1}(\frac{1}{2} + \frac{1}{2}) + \cos^{-1}(\frac{1}{2} - \frac{1}{2}) = 2 \sin^{-1}(1) + \cos^{-1}(0) \] We know \( \sin^{-1}(1) = \frac{\pi}{2} \) and \( \cos^{-1}(0) = \frac{\pi}{2} \): \[ y = 2 \cdot \frac{\pi}{2} + \frac{\pi}{2} = \pi + \frac{\pi}{2} = \frac{3\pi}{2} \] ### Step 3: Determine the range of the function. The values of \( y \) at the boundaries are \( \pi \) and \( \frac{3\pi}{2} \). Since the function is continuous within the domain, the range of \( y \) is: \[ \{ \pi, \frac{3\pi}{2} \} \] ### Step 4: Apply the greatest integer function. The greatest integer function \( [y] \) will take the values: - For \( y = \pi \), \( [\pi] = 3 \) (since \( \pi \approx 3.14 \)) - For \( y = \frac{3\pi}{2} \), \( \left[\frac{3\pi}{2}\right] = 4 \) (since \( \frac{3\pi}{2} \approx 4.71 \)) Thus, the range of the function \( y \) in terms of the greatest integer function is: \[ \{3, 4\} \] ### Final Answer: The range of the function \( y = 2 \sin^{-1}(x^2 + \frac{1}{2}) + \cos^{-1}(x^2 - \frac{1}{2}) \) is \( \{3, 4\} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of elements in the range of the function : y =sin ^(-1) [x ^(2) + (5)/(9)] + cos ^(-1) [x ^(2) -(4)/(9)] where [.] denotes the greatest integer function is

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9] where where [.] denotes the greatest integer function is:

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))sin[(x)/(2)] , where [.] denotes the greatest integer function, is _________.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.