Home
Class 12
MATHS
Consider the definite integrals A=int(0)...

Consider the definite integrals `A=int_(0)^(pi)sinx cosx^(2)xdx` and `B=int_(0)^((pi)/(2))sinx cos^(2)xdx`. Then,

A

`A=2B`

B

`A=piB`

C

`A=(pi)/(2)B`

D

`B=2A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the definite integrals \( A \) and \( B \) and establish a relationship between them. 1. **Define the integrals**: \[ A = \int_{0}^{\pi} \sin x \cos^2 x \, dx \] \[ B = \int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx \] 2. **Use the property of definite integrals**: We can use the property of integrals that states: \[ \int_{0}^{2A} f(x) \, dx = \int_{0}^{A} f(x) \, dx + \int_{0}^{A} f(2A - x) \, dx \] Here, we will apply it to \( A \) with \( A = \pi/2 \): \[ A = \int_{0}^{\pi} \sin x \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx + \int_{0}^{\frac{\pi}{2}} \sin(\pi - x) \cos^2(\pi - x) \, dx \] 3. **Evaluate the second integral**: For the second integral, we use the identities: \[ \sin(\pi - x) = \sin x \quad \text{and} \quad \cos(\pi - x) = -\cos x \] Since we have \( \cos^2(\pi - x) = \cos^2 x \), we can write: \[ \int_{0}^{\frac{\pi}{2}} \sin(\pi - x) \cos^2(\pi - x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx = B \] 4. **Combine the results**: Therefore, we have: \[ A = B + B = 2B \] 5. **Conclusion**: Thus, we conclude that: \[ A = 2B \] ### Final Answer: The relationship between the integrals is \( A = 2B \).
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin^(4) x cos^(2)xdx =

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^( pi/2)x sec^(2)xdx

Evaluate the definite integrals int_0^(pi/2) cos2xdx

int_(0)^(pi//2) x sinx cos x dx=?

Evaluate the definite integrals int_0^(pi/2)cos^2xdx

int_(0)^( pi/4)x*sec^(2)xdx=

int_(0)^( pi/4)x*sec^(2)xdx=

Evaluate the definite integrals int0pi/4sin2xdx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .