Home
Class 12
MATHS
Let A=[(1,3cos 2theta,1),(sin2theta, 1, ...

Let `A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta, 1)]` the maximum value of `|A|` is equal to k, then `(k-3)^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the given matrix \( A \) and then determine its maximum value. Let's go through the steps systematically. ### Step 1: Write down the matrix The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 3\cos(2\theta) & 1 \\ \sin(2\theta) & 1 & 3\cos(2\theta) \\ 1 & \sin(2\theta) & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant \( |A| \) We will use the determinant formula for a \( 3 \times 3 \) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: - \( a = 1 \), \( b = 3\cos(2\theta) \), \( c = 1 \) - \( d = \sin(2\theta) \), \( e = 1 \), \( f = 3\cos(2\theta) \) - \( g = 1 \), \( h = \sin(2\theta) \), \( i = 1 \) Calculating the determinant: \[ |A| = 1 \cdot (1 \cdot 1 - 3\cos(2\theta) \cdot \sin(2\theta)) - 3\cos(2\theta) \cdot (\sin(2\theta) \cdot 1 - 3\cos(2\theta) \cdot 1) + 1 \cdot (\sin(2\theta) \cdot \sin(2\theta) - 1 \cdot 1) \] This simplifies to: \[ |A| = 1 - 3\cos(2\theta)\sin(2\theta) - 3\cos(2\theta)(\sin(2\theta) - 3\cos(2\theta)) + (\sin^2(2\theta) - 1) \] ### Step 3: Simplify the expression Now we simplify: \[ |A| = 1 - 3\cos(2\theta)\sin(2\theta) - 3\cos(2\theta)\sin(2\theta) + 9\cos^2(2\theta) + \sin^2(2\theta) - 1 \] \[ |A| = 9\cos^2(2\theta) + \sin^2(2\theta) - 6\cos(2\theta)\sin(2\theta) \] ### Step 4: Use trigonometric identities Using the identity \( \sin^2(2\theta) + \cos^2(2\theta) = 1 \): \[ |A| = 8\cos^2(2\theta) + 1 - 6\cos(2\theta)\sin(2\theta) \] We can express \( \sin(4\theta) \) as \( 2\sin(2\theta)\cos(2\theta) \): \[ |A| = 8\cos^2(2\theta) + 1 - 3\sin(4\theta) \] ### Step 5: Find the maximum value To find the maximum value of \( |A| \), we need to analyze the expression: \[ |A| = 8\cos^2(2\theta) + 1 - 3\sin(4\theta) \] The maximum value of \( -3\sin(4\theta) \) is \( 3 \) when \( \sin(4\theta) = -1 \). Thus: \[ |A|_{\text{max}} = 8\cos^2(2\theta) + 1 + 3 \] The maximum value of \( \cos^2(2\theta) \) is \( 1 \): \[ |A|_{\text{max}} = 8 \cdot 1 + 1 + 3 = 12 \] ### Step 6: Determine \( k \) and calculate \( (k-3)^2 \) From the calculations, we find \( k = 12 \). Therefore: \[ (k - 3)^2 = (12 - 3)^2 = 9^2 = 81 \] ### Final Answer Thus, the value of \( (k - 3)^2 \) is \( 81 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta=|(1,3cos theta,1),(sin theta,1,3cos theta),(1,sin theta,1)|, then the 1/1000 [|maximum value of Delta- minimum value of Delta|^3 ] is equal to.

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If sec^2 theta (1 + sin theta) (1 — sin theta) = k , then find the value of k.

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

The value of 2 sin^2 theta + k cos^2 2 theta =1 , then k is equal to :

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).