Home
Class 12
MATHS
The value of lim(xrarr0)((1+tanx)/(1+sin...

The value of `lim_(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx))` is equal to

A

0

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x}\right)^{\frac{2}{\sin x}}, \] we start by substituting \(x = 0\): 1. **Substituting \(x = 0\)**: \[ \frac{1 + \tan(0)}{1 + \sin(0)} = \frac{1 + 0}{1 + 0} = \frac{1}{1} = 1. \] Thus, we have the form \(1^{\infty}\). **Hint**: Recognize that \(1^{\infty}\) is an indeterminate form, which suggests we need to manipulate the expression. 2. **Using the property of limits**: We can use the property that if \( \lim_{x \to a} f(x) = 1 \) and \( \lim_{x \to a} g(x) = \infty \), then: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x) - 1) g(x)}. \] 3. **Define \(f(x)\) and \(g(x)\)**: Let \[ f(x) = \frac{1 + \tan x}{1 + \sin x} \quad \text{and} \quad g(x) = \frac{2}{\sin x}. \] 4. **Finding \(f(x) - 1\)**: We need to compute: \[ f(x) - 1 = \frac{1 + \tan x}{1 + \sin x} - 1 = \frac{(1 + \tan x) - (1 + \sin x)}{1 + \sin x} = \frac{\tan x - \sin x}{1 + \sin x}. \] 5. **Substituting into the limit**: Now we substitute into the limit: \[ \lim_{x \to 0} (f(x) - 1) g(x) = \lim_{x \to 0} \frac{\tan x - \sin x}{1 + \sin x} \cdot \frac{2}{\sin x}. \] 6. **Using Taylor series expansions**: Recall the Taylor series expansions around \(x = 0\): \[ \tan x = x + \frac{x^3}{3} + O(x^5), \quad \sin x = x - \frac{x^3}{6} + O(x^5). \] Therefore, \[ \tan x - \sin x = \left(x + \frac{x^3}{3}\right) - \left(x - \frac{x^3}{6}\right) = \frac{x^3}{2} + O(x^5). \] 7. **Substituting back**: Substitute this into our limit: \[ \lim_{x \to 0} \frac{\frac{x^3}{2}}{1 + \sin x} \cdot \frac{2}{\sin x} = \lim_{x \to 0} \frac{x^3}{\sin x (1 + \sin x)}. \] As \(x \to 0\), \(\sin x \sim x\), so: \[ \lim_{x \to 0} \frac{x^3}{x(1 + x)} = \lim_{x \to 0} \frac{x^2}{1 + x} = 0. \] 8. **Final limit**: Thus, we have: \[ \lim_{x \to 0} (f(x) - 1) g(x) = 0. \] Therefore, \[ \lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x}\right)^{\frac{2}{\sin x}} = e^0 = 1. \] So, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

The value of lim_(xrarr0) ((1+tanx)/(1+sin x))^(cosec x) , is

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

lim_(xrarr0) (x^(2)-x)/(sinx)

The value of lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal to

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)) , is