Home
Class 12
MATHS
If phi(x)=log(8)log(3)x, then phi'(e ) i...

If `phi(x)=log_(8)log_(3)x`, then `phi'(e )` is equal to

A

`elog8`

B

`-elog8`

C

`(1)/(elog8)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( \phi(x) = \log_8(\log_3 x) \) and then evaluate it at \( x = e \). ### Step-by-Step Solution: 1. **Rewrite the logarithm**: Using the change of base formula, we can rewrite \( \log_8(\log_3 x) \): \[ \phi(x) = \frac{\log(\log_3 x)}{\log(8)} \] where \( \log \) denotes the natural logarithm (base \( e \)). 2. **Differentiate \( \phi(x) \)**: Now, we will differentiate \( \phi(x) \): \[ \phi'(x) = \frac{1}{\log(8)} \cdot \frac{d}{dx}(\log(\log_3 x)) \] To differentiate \( \log(\log_3 x) \), we will use the chain rule: \[ \frac{d}{dx}(\log(\log_3 x)) = \frac{1}{\log_3 x} \cdot \frac{d}{dx}(\log_3 x) \] We also need to differentiate \( \log_3 x \): \[ \log_3 x = \frac{\log x}{\log 3} \quad \Rightarrow \quad \frac{d}{dx}(\log_3 x) = \frac{1}{\log 3} \cdot \frac{1}{x} \] Combining these results, we have: \[ \frac{d}{dx}(\log(\log_3 x)) = \frac{1}{\log_3 x} \cdot \frac{1}{\log 3} \cdot \frac{1}{x} \] 3. **Substituting back into the derivative**: Now substituting back into our expression for \( \phi'(x) \): \[ \phi'(x) = \frac{1}{\log(8)} \cdot \frac{1}{\log_3 x} \cdot \frac{1}{\log 3} \cdot \frac{1}{x} \] 4. **Evaluate at \( x = e \)**: Now we need to evaluate \( \phi'(e) \): \[ \phi'(e) = \frac{1}{\log(8)} \cdot \frac{1}{\log_3 e} \cdot \frac{1}{\log 3} \cdot \frac{1}{e} \] We know that \( \log_3 e = \frac{\log e}{\log 3} = \frac{1}{\log 3} \), so: \[ \phi'(e) = \frac{1}{\log(8)} \cdot \frac{1}{\frac{1}{\log 3}} \cdot \frac{1}{\log 3} \cdot \frac{1}{e} \] Simplifying this gives: \[ \phi'(e) = \frac{1}{\log(8)} \cdot \frac{1}{\log 3} \cdot \frac{1}{e} \] 5. **Final result**: Thus, the final result is: \[ \phi'(e) = \frac{1}{e \cdot \log(8) \cdot \log(3)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)[log_(e)x] , then what is f' (e) equal to?

If 3^(x+1)=6^(log_(2)3) , then x is equal to

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x)=|log_(e)|x||," then "f'(x) equals

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If phi (x)=phi '(x) and phi(1)=2 , then phi(3) equals