Home
Class 12
MATHS
If the volume of the parallelepiped form...

If the volume of the parallelepiped formed by the vectors `veca xx vecb, vecb xx vecc and vecc xx veca` is 36 cubic units, then the volume (in cubic units) of the tetrahedron formed by the vectors `veca+vecb, vecb+vecc and vecc + veca` is equal to

A

12

B

6

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the volume of the tetrahedron formed by the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\) given that the volume of the parallelepiped formed by the vectors \(\vec{a} \times \vec{b}\), \(\vec{b} \times \vec{c}\), and \(\vec{c} \times \vec{a}\) is 36 cubic units. ### Step-by-Step Solution: 1. **Understanding the Volume of the Parallelepiped**: The volume \(V\) of the parallelepiped formed by three vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by the scalar triple product: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] In our case, the vectors are \(\vec{u} = \vec{a} \times \vec{b}\), \(\vec{v} = \vec{b} \times \vec{c}\), and \(\vec{w} = \vec{c} \times \vec{a}\). 2. **Given Volume of the Parallelepiped**: We are given that the volume of the parallelepiped is 36 cubic units. Therefore, \[ |\vec{a} \times \vec{b} \cdot ((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}))| = 36 \] 3. **Relating to the Volume of Tetrahedron**: The volume \(V_T\) of a tetrahedron formed by vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by: \[ V_T = \frac{1}{6} |\vec{u} \cdot (\vec{v} \times \vec{w})| \] 4. **Finding the Volume of the Tetrahedron**: We need to find the volume of the tetrahedron formed by the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\). 5. **Expressing the Tetrahedron Volume**: The volume of the tetrahedron formed by these vectors can be expressed as: \[ V_T = \frac{1}{6} |(\vec{a} + \vec{b}) \cdot ((\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}))| \] 6. **Using the Scalar Triple Product**: We can simplify the expression using the property of the scalar triple product: \[ (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \] 7. **Calculating the Volume**: We know from the problem that: \[ |\vec{a} \times \vec{b} \cdot (\vec{b} \times \vec{c} \times \vec{c} \times \vec{a})| = 36 \] Therefore, we can relate this back to our tetrahedron volume: \[ V_T = \frac{1}{6} \cdot 2 \cdot 6 = 2 \text{ cubic units} \] ### Final Answer: The volume of the tetrahedron formed by the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\) is **2 cubic units**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Volume of parallelpiped formed by vectors veca xx vecb, vecb xx vecc and vecc xx veca is 36 sq. units.

The volume of a tetrahedron determined by the vectors veca, vecb, vecc is (3)/(4) cubic units. The volume (in cubic units) of a tetrahedron determined by the vectors 3(veca xx vecb), 4(vecbxxc) and 5(vecc xx veca) will be

If [(veca,vecb,vecc)]=3 , then the volume (in cubic units) of the parallelopiped with 2veca+vecb,2vecb+vecc and 2vecc+veca as coterminous edges is

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is