Home
Class 12
MATHS
The number of 2xx2 matrices A with real ...

The number of `2xx2` matrices A with real entries, such that `A+A^(T)=3I` and `A A^(T)=5I`, is equal to

A

0

B

1

C

2

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of \( 2 \times 2 \) matrices \( A \) with real entries such that: 1. \( A + A^T = 3I \) 2. \( A A^T = 5I \) Let's denote the matrix \( A \) as: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 1: Solve the first equation \( A + A^T = 3I \) The transpose of \( A \) is: \[ A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] Now, adding \( A \) and \( A^T \): \[ A + A^T = \begin{pmatrix} a + a & b + c \\ c + b & d + d \end{pmatrix} = \begin{pmatrix} 2a & b + c \\ b + c & 2d \end{pmatrix} \] Setting this equal to \( 3I \): \[ \begin{pmatrix} 2a & b + c \\ b + c & 2d \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] From this, we can derive the following equations: 1. \( 2a = 3 \) → \( a = \frac{3}{2} \) 2. \( 2d = 3 \) → \( d = \frac{3}{2} \) 3. \( b + c = 0 \) → \( c = -b \) ### Step 2: Substitute into the second equation \( A A^T = 5I \) Now, we need to compute \( A A^T \): \[ A A^T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ca + db & c^2 + d^2 \end{pmatrix} \] Substituting \( a = \frac{3}{2} \), \( d = \frac{3}{2} \), and \( c = -b \): \[ A A^T = \begin{pmatrix} \left(\frac{3}{2}\right)^2 + b^2 & \frac{3}{2}(-b) + \frac{3}{2}b \\ \frac{3}{2}b + \frac{3}{2}(-b) & (-b)^2 + \left(\frac{3}{2}\right)^2 \end{pmatrix} \] Calculating the elements: 1. \( \left(\frac{3}{2}\right)^2 + b^2 = \frac{9}{4} + b^2 \) 2. \( \frac{3}{2}(-b) + \frac{3}{2}b = 0 \) 3. \( \frac{3}{2}b + \frac{3}{2}(-b) = 0 \) 4. \( (-b)^2 + \left(\frac{3}{2}\right)^2 = b^2 + \frac{9}{4} \) Thus, we have: \[ A A^T = \begin{pmatrix} \frac{9}{4} + b^2 & 0 \\ 0 & b^2 + \frac{9}{4} \end{pmatrix} \] Setting this equal to \( 5I \): \[ \begin{pmatrix} \frac{9}{4} + b^2 & 0 \\ 0 & b^2 + \frac{9}{4} \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] From this, we get two equations: 1. \( \frac{9}{4} + b^2 = 5 \) 2. \( b^2 + \frac{9}{4} = 5 \) Both equations are the same, so we can solve one: \[ b^2 = 5 - \frac{9}{4} = \frac{20}{4} - \frac{9}{4} = \frac{11}{4} \] Thus, \( b = \pm \frac{\sqrt{11}}{2} \). ### Step 3: Determine the matrices Using \( b = \pm \frac{\sqrt{11}}{2} \) and \( c = -b \): 1. If \( b = \frac{\sqrt{11}}{2} \), then \( c = -\frac{\sqrt{11}}{2} \). 2. If \( b = -\frac{\sqrt{11}}{2} \), then \( c = \frac{\sqrt{11}}{2} \). Thus, we have two matrices: 1. \( A_1 = \begin{pmatrix} \frac{3}{2} & \frac{\sqrt{11}}{2} \\ -\frac{\sqrt{11}}{2} & \frac{3}{2} \end{pmatrix} \) 2. \( A_2 = \begin{pmatrix} \frac{3}{2} & -\frac{\sqrt{11}}{2} \\ \frac{\sqrt{11}}{2} & \frac{3}{2} \end{pmatrix} \) ### Conclusion The number of \( 2 \times 2 \) matrices \( A \) that satisfy the given conditions is **2**.
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the total number of 2xx2 matrices with each entry 0 or 1?

The number of 2xx2 matrices A , that are there with the elements as real numbers satisfying A+A^(T)=I and A A^(T)=I is

If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I , then tr. (A^(2)+B^(2)) is equal to ________.

If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a),(c,a,b)] which are possible such that A A^(T)=I is _______.

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

The number of matrices X with entries {0,2,3} for which the sum of all the principal diagonal elements of X.X^(T) is 28 (where X^(T) is the transpose matrix of X), is

Total number of possible matrices of order 3xx3 with each entry 2 or 0 is

The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s2x2u n i tm a t r i x) is 1 (b) 2 (c) 3 (d) infinite

The number of possible matrices of order 3xx3 with each entry 2 or 0 is (a) 9 (b) 27 (c) 81 (d) none of these

The number of all possible matrices of order 3 xx3 with each entry 0 or 1 is: