Home
Class 12
MATHS
If A(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,...

If `A_(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)]`, then `lim_(nrarroo)Sigma_(r=1)^(n)|A_(r)|` is equal to

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit as \( n \) approaches infinity of the sum of the determinants of the matrix \( A_r \). The matrix is given as: \[ A_r = \begin{pmatrix} \frac{1}{r(r+1)} & \frac{1}{3^r} \\ 2 & 3 \end{pmatrix} \] ### Step 1: Calculate the Determinant of \( A_r \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as \( ad - bc \). Therefore, for our matrix \( A_r \): \[ |A_r| = \left(\frac{1}{r(r+1)} \cdot 3\right) - \left(\frac{1}{3^r} \cdot 2\right) \] Calculating this gives: \[ |A_r| = \frac{3}{r(r+1)} - \frac{2}{3^r} \] ### Step 2: Set Up the Limit Expression We need to find: \[ \lim_{n \to \infty} \sum_{r=1}^{n} |A_r| = \lim_{n \to \infty} \sum_{r=1}^{n} \left( \frac{3}{r(r+1)} - \frac{2}{3^r} \right) \] This can be separated into two sums: \[ \lim_{n \to \infty} \left( \sum_{r=1}^{n} \frac{3}{r(r+1)} - \sum_{r=1}^{n} \frac{2}{3^r} \right) \] ### Step 3: Evaluate the First Sum The first sum can be simplified: \[ \sum_{r=1}^{n} \frac{3}{r(r+1)} = 3 \sum_{r=1}^{n} \left( \frac{1}{r} - \frac{1}{r+1} \right) \] This is a telescoping series, which simplifies to: \[ 3 \left( 1 - \frac{1}{n+1} \right) = 3 - \frac{3}{n+1} \] Taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \left( 3 - \frac{3}{n+1} \right) = 3 \] ### Step 4: Evaluate the Second Sum The second sum is a geometric series: \[ \sum_{r=1}^{n} \frac{2}{3^r} = 2 \left( \frac{1/3}{1 - 1/3} \right) = 2 \left( \frac{1/3}{2/3} \right) = 1 \] As \( n \to \infty \), this sum converges to 1. ### Step 5: Combine the Results Now we combine the results from both sums: \[ \lim_{n \to \infty} \left( 3 - 1 \right) = 2 \] ### Final Answer Thus, the final result is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} |A_r| = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies the relation

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

lim_(nrarroo) Sigma_(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal to

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to