Home
Class 12
MATHS
The solution of the equation cos^(-1)x+c...

The solution of the equation `cos^(-1)x+cos^(-1)2x=(2pi)/(3)` is

A

`x=pm(sqrt3)/(sqrt28)`

B

`x =pm(sqrt3)/(sqrt26)`

C

`x=pm(1)/(sqrt2)`

D

`x=pm(sqrt3) /(sqrt38) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} x + \cos^{-1} 2x = \frac{2\pi}{3} \), we can follow these steps: ### Step 1: Use the formula for the sum of inverse cosines We know that: \[ \cos^{-1} a + \cos^{-1} b = \cos^{-1(ab - \sqrt{(1-a^2)(1-b^2)})} \] In our case, let \( a = x \) and \( b = 2x \). Then we can rewrite the equation as: \[ \cos^{-1} x + \cos^{-1} 2x = \cos^{-1(x \cdot 2x - \sqrt{(1-x^2)(1-(2x)^2)})} \] This simplifies to: \[ \cos^{-1} x + \cos^{-1} 2x = \cos^{-1(2x^2 - \sqrt{(1-x^2)(1-4x^2)})} \] ### Step 2: Set the cosine of both sides Since \( \cos^{-1}(y) = \theta \) implies \( \cos(\theta) = y \), we can set: \[ 2x^2 - \sqrt{(1-x^2)(1-4x^2)} = \cos\left(\frac{2\pi}{3}\right) \] We know that \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \). Thus, we have: \[ 2x^2 - \sqrt{(1-x^2)(1-4x^2)} = -\frac{1}{2} \] ### Step 3: Rearranging the equation Rearranging gives us: \[ 2x^2 + \frac{1}{2} = \sqrt{(1-x^2)(1-4x^2)} \] ### Step 4: Square both sides Now, we square both sides to eliminate the square root: \[ \left(2x^2 + \frac{1}{2}\right)^2 = (1-x^2)(1-4x^2) \] Expanding both sides: \[ 4x^4 + 2x^2 + \frac{1}{4} = 1 - 4x^2 - x^2 + 4x^4 \] This simplifies to: \[ 4x^4 + 2x^2 + \frac{1}{4} = 1 - 5x^2 + 4x^4 \] ### Step 5: Move all terms to one side Now, we can move all terms to one side: \[ 4x^4 - 4x^4 + 2x^2 + 5x^2 + \frac{1}{4} - 1 = 0 \] This simplifies to: \[ 7x^2 - \frac{3}{4} = 0 \] ### Step 6: Solve for \( x^2 \) Rearranging gives us: \[ 7x^2 = \frac{3}{4} \] \[ x^2 = \frac{3}{28} \] ### Step 7: Solve for \( x \) Taking the square root: \[ x = \pm \sqrt{\frac{3}{28}} = \pm \frac{\sqrt{3}}{\sqrt{28}} = \pm \frac{\sqrt{3}}{2\sqrt{7}} = \pm \frac{\sqrt{21}}{14} \] ### Final Answer Thus, the solution to the equation is: \[ x = \pm \frac{\sqrt{3}}{2\sqrt{7}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of possible solution for the equation sin^(-1) x + cos^(-1)y=(11pi)/(2) is / are

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+1) ^(2)))=pi (1- {x}, for x in[0,76] is equal to (where {.} denote fraction part function)

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

The number of solutions of the equation cos^(2)((pi)/(3)cos x - (8pi)/(3))=1 in the interval [0,10pi] is

Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is: