Home
Class 12
MATHS
Consider the integrals I=int(sinx)/(3cos...

Consider the integrals `I=int(sinx)/(3cos x+4sinx)dx and J=int(cosx)/(3cos x+4sinx)dx`. Then, the integral `4J-3I` is equal to (where, c is the constant of integration)

A

`ln|2 cos x-4 sinx|+c`

B

`ln|3 cos x+4 sin x|+c`

C

`ln|3 sin x+4 cos x|+c`

D

`ln|3 sin x-4 cos x|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( 4J - 3I \) where: \[ I = \int \frac{\sin x}{3 \cos x + 4 \sin x} \, dx \] \[ J = \int \frac{\cos x}{3 \cos x + 4 \sin x} \, dx \] ### Step 1: Write the expression for \( 4J - 3I \) We can express \( 4J - 3I \) as follows: \[ 4J - 3I = 4 \int \frac{\cos x}{3 \cos x + 4 \sin x} \, dx - 3 \int \frac{\sin x}{3 \cos x + 4 \sin x} \, dx \] ### Step 2: Combine the integrals Since both integrals have the same denominator, we can combine them: \[ 4J - 3I = \int \left( \frac{4 \cos x - 3 \sin x}{3 \cos x + 4 \sin x} \right) \, dx \] ### Step 3: Substitution Let \( t = 3 \cos x + 4 \sin x \). Then, we differentiate \( t \): \[ dt = (-3 \sin x + 4 \cos x) \, dx \] Rearranging gives us: \[ dx = \frac{dt}{-3 \sin x + 4 \cos x} \] ### Step 4: Rewrite the integral Now, we need to express \( 4 \cos x - 3 \sin x \) in terms of \( t \): From our substitution, we can express \( 4 \cos x - 3 \sin x \) as: \[ 4 \cos x - 3 \sin x = \frac{4 \cos x - 3 \sin x}{-3 \sin x + 4 \cos x} \cdot (-3 \sin x + 4 \cos x) \] Thus, we can rewrite our integral: \[ 4J - 3I = \int \frac{4 \cos x - 3 \sin x}{3 \cos x + 4 \sin x} \cdot \frac{dt}{-3 \sin x + 4 \cos x} \] ### Step 5: Simplify the integral Notice that: \[ \frac{4 \cos x - 3 \sin x}{-3 \sin x + 4 \cos x} = -1 \] Thus, we can simplify our integral: \[ 4J - 3I = -\int \frac{dt}{t} \] ### Step 6: Evaluate the integral The integral of \( \frac{1}{t} \) is: \[ -\int \frac{dt}{t} = -\ln |t| + C \] Substituting back for \( t \): \[ 4J - 3I = -\ln |3 \cos x + 4 \sin x| + C \] ### Final Answer Thus, the value of \( 4J - 3I \) is: \[ 4J - 3I = -\ln |3 \cos x + 4 \sin x| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the integral int(2-3sinx)/(cos^2x)dx

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the constant of integration)

int(sinx)/(3+4cos^(2)x)dx

If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C is a constant of integration)

Integrate: int(sinx*cosx)dx