Home
Class 12
MATHS
Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqr...

Simplify `P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt99+99sqrt100`

A

`(1)/(10)`

B

`(3)/(10)`

C

`(9)/(10)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ P = \frac{1}{2\sqrt{1} + \sqrt{2}} + \frac{1}{3\sqrt{2} + 2\sqrt{3}} + \ldots + \frac{1}{100\sqrt{99} + 99\sqrt{100}}, \] we will follow these steps: ### Step 1: Simplifying the first term Consider the first term: \[ \frac{1}{2\sqrt{1} + \sqrt{2}}. \] To simplify, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1 \cdot (2 - \sqrt{2})}{(2\sqrt{1} + \sqrt{2})(2 - \sqrt{2})}. \] Calculating the denominator: \[ (2\sqrt{1} + \sqrt{2})(2 - \sqrt{2}) = 2\sqrt{1} \cdot 2 - 2\sqrt{1} \cdot \sqrt{2} + \sqrt{2} \cdot 2 - \sqrt{2} \cdot \sqrt{2} = 4 - 2\sqrt{2} + 2\sqrt{2} - 2 = 2. \] Thus, we have: \[ \frac{2 - \sqrt{2}}{2} = 1 - \frac{\sqrt{2}}{2}. \] ### Step 2: Simplifying the second term Now, consider the second term: \[ \frac{1}{3\sqrt{2} + 2\sqrt{3}}. \] Again, we multiply by the conjugate: \[ \frac{1 \cdot (3\sqrt{2} - 2\sqrt{3})}{(3\sqrt{2} + 2\sqrt{3})(3\sqrt{2} - 2\sqrt{3})}. \] Calculating the denominator: \[ (3\sqrt{2})^2 - (2\sqrt{3})^2 = 18 - 12 = 6. \] Thus, we have: \[ \frac{3\sqrt{2} - 2\sqrt{3}}{6} = \frac{1}{2}\sqrt{2} - \frac{1}{3}\sqrt{3}. \] ### Step 3: Continuing the pattern Continuing this process for each term, we observe a pattern: \[ \frac{1}{n\sqrt{n-1} + (n-1)\sqrt{n}} \rightarrow \text{results in a similar form}. \] ### Step 4: Writing the general term The general term can be expressed as: \[ \frac{\sqrt{n-1}}{n(n-1)} - \frac{\sqrt{n}}{n(n)}. \] ### Step 5: Summing the series Now we can sum the series: \[ P = \left(1 - \frac{\sqrt{2}}{2}\right) + \left(\frac{1}{2}\sqrt{2} - \frac{1}{3}\sqrt{3}\right) + \ldots + \left(\frac{\sqrt{99}}{99} - \frac{\sqrt{100}}{100}\right). \] Notice that this is a telescoping series where many terms will cancel out: \[ P = 1 - \frac{\sqrt{100}}{100} = 1 - 1 = 0. \] ### Step 6: Final simplification The last term simplifies to: \[ P = 1 - \frac{10}{100} = 1 - 0.1 = 0.9 = \frac{9}{10}. \] Thus, the final answer is: \[ \boxed{\frac{9}{10}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

Simplify: (1)/(sqrt(3+2sqrt(2)))+(1)/(sqrt(3+2sqrt(2)))

Simplify: (2sqrt(3)-sqrt(2))/(2sqrt(3)+sqrt(2))

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Simplify: (2sqrt(2)+sqrt(3))/(2sqrt(2)-sqrt(3))

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

(1)/(sqrt(3))times(sqrt(2))/(sqrt(3))=