Home
Class 12
MATHS
if |z-i| le 2 and z1=5+3i, then the max...

if `|z-i| le 2` and `z_1=5+3i`, then the maximum value of `|iz+z_1|` is :

A

`7+sqrt(13)`

B

`7+sqrt(12)`

C

7

D

`sqrt(34)-2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-i| ≤ 2 and z_0 = 5+3i , the maximum value of |i z + z_0| is

For a complex number Z, if |Z-i|le2 and Z_(1)=5+3i , then the maximum value of |iZ+Z_(1)| is (where, i^(2)=-1 )

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If |z-1|+|z+3|le8, then the maximum, value of |z-4| is =

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

If |z +2 - i |=5 then the maximum value of |3z+9-7i| is K, then find k

If abs(z+4) le 3 , the maximum value of abs(z+1) is

If z, z _1 and z_2 are complex numbers such that z = z _1 z_2 and |barz_2 - z_1| le 1 , then maximum value of |z| - Re(z) is _____.

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.