Home
Class 12
MATHS
The value of the integral I=int(0)^((pi)...

The value of the integral `I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x - \cos^3 x}{1 + \sin^6 x \cos^6 x} \, dx, \] we can use a property of definite integrals. This property states that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we will let \( a = \frac{\pi}{2} \) and replace \( x \) with \( \frac{\pi}{2} - x \). ### Step 1: Apply the property of definite integrals Using the property, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right) - \cos^3\left(\frac{\pi}{2} - x\right)}{1 + \sin^6\left(\frac{\pi}{2} - x\right) \cos^6\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the trigonometric functions Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x - \sin^3 x}{1 + \cos^6 x \sin^6 x} \, dx. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x - \cos^3 x}{1 + \sin^6 x \cos^6 x} \, dx \) (original) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x - \sin^3 x}{1 + \cos^6 x \sin^6 x} \, dx \) ### Step 4: Add the two equations Adding both expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x - \cos^3 x + \cos^3 x - \sin^3 x}{1 + \sin^6 x \cos^6 x} \, dx. \] The terms \( \sin^3 x \) and \( -\sin^3 x \), as well as \( \cos^3 x \) and \( -\cos^3 x \), cancel each other out: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{0}{1 + \sin^6 x \cos^6 x} \, dx = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0. \] ### Step 5: Solve for \( I \) Thus, we find: \[ 2I = 0 \implies I = 0. \] ### Final Answer The value of the integral is \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

The value of the integral int_(-3pi)^(3pi)|sin^(3)x|dx is equal to

int_0^(pi/2) sin^3x/(sin^3x+cos^3x)dx