Home
Class 12
MATHS
If sqrt(x+y)+sqrt(y-x)=2, then the value...

If `sqrt(x+y)+sqrt(y-x)=2`, then the value of `(d^(2)y)/(dx^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \sqrt{x+y} + \sqrt{y-x} = 2 \] ### Step 1: Square both sides We square both sides to eliminate the square roots. \[ (\sqrt{x+y} + \sqrt{y-x})^2 = 2^2 \] Expanding the left side using the formula \((a+b)^2 = a^2 + b^2 + 2ab\): \[ (x+y) + (y-x) + 2\sqrt{(x+y)(y-x)} = 4 \] ### Step 2: Simplify the equation Now, simplify the left side: \[ y + y + 2\sqrt{(x+y)(y-x)} = 4 \] This simplifies to: \[ 2y + 2\sqrt{(x+y)(y-x)} = 4 \] ### Step 3: Isolate the square root Next, isolate the square root term: \[ 2\sqrt{(x+y)(y-x)} = 4 - 2y \] Dividing both sides by 2: \[ \sqrt{(x+y)(y-x)} = 2 - y \] ### Step 4: Square both sides again Square both sides again to eliminate the square root: \[ (x+y)(y-x) = (2-y)^2 \] ### Step 5: Expand both sides Now, expand both sides: Left side: \[ xy - x^2 + y^2 - xy = y^2 - x^2 \] Right side: \[ (2-y)(2-y) = 4 - 4y + y^2 \] ### Step 6: Set the equation Setting both sides equal gives: \[ y^2 - x^2 = 4 - 4y + y^2 \] ### Step 7: Simplify Subtract \(y^2\) from both sides: \[ -x^2 = 4 - 4y \] Rearranging gives: \[ x^2 = 4y - 4 \] ### Step 8: Differentiate both sides Now, differentiate both sides with respect to \(x\): \[ 2x \frac{dx}{dx} = 4 \frac{dy}{dx} \] This simplifies to: \[ 2x = 4 \frac{dy}{dx} \] ### Step 9: Solve for \(\frac{dy}{dx}\) Dividing both sides by 4: \[ \frac{dy}{dx} = \frac{x}{2} \] ### Step 10: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now, differentiate \(\frac{dy}{dx}\) again: \[ \frac{d^2y}{dx^2} = \frac{1}{2} \frac{dx}{dx} = \frac{1}{2} \] Thus, the final answer is: \[ \frac{d^2y}{dx^2} = \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)=y+sqrt(1+y^(2) then the value of y is

If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

If sqrt(y+x)+sqrt(y-x)=c, where cne0 , then (dy)/(dx) has the value equal to

sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2) equals

If sqrt(x)+sqrt(y) = sqrt(a) , find (d^(2)y)/(dx^(2)) at x = a.

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find the value of x^(2)-y^(2) .

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2sqrtx) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to