Home
Class 12
MATHS
Let veca and vecb are vectors such that ...

Let `veca and vecb` are vectors such that `|veca|=2, |vecb|=3 and veca. vecb=4`. If `vecc=(3veca xx vecb)-4vecb`, then `|vecc|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{c}\), defined as: \[ \vec{c} = 3(\vec{a} \times \vec{b}) - 4\vec{b} \] We are given the following information: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(\vec{a} \cdot \vec{b} = 4\) ### Step 1: Calculate \(|\vec{a} \times \vec{b}|\) Using the property of dot and cross products, we know: \[ |\vec{a}|^2 + |\vec{b}|^2 = |\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 \] Substituting the known values: \[ 2^2 + 3^2 = 4^2 + |\vec{a} \times \vec{b}|^2 \] Calculating the squares: \[ 4 + 9 = 16 + |\vec{a} \times \vec{b}|^2 \] This simplifies to: \[ 13 = 16 + |\vec{a} \times \vec{b}|^2 \] Rearranging gives: \[ |\vec{a} \times \vec{b}|^2 = 13 - 16 = -3 \] This is incorrect, so let's recalculate: \[ |\vec{a}|^2 + |\vec{b}|^2 = 4 + 9 = 13 \] And we know: \[ |\vec{a} \cdot \vec{b}|^2 = 4^2 = 16 \] Thus: \[ |\vec{a} \times \vec{b}|^2 = 13 - 16 = -3 \] This indicates an error in the calculations. Let's correct it. ### Step 2: Correct Calculation of \(|\vec{a} \times \vec{b}|\) Using the correct relation: \[ |\vec{a}|^2 + |\vec{b}|^2 = |\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 \] Substituting the values: \[ 4 + 9 = 16 + |\vec{a} \times \vec{b}|^2 \] This simplifies to: \[ 13 = 16 + |\vec{a} \times \vec{b}|^2 \] So, we have: \[ |\vec{a} \times \vec{b}|^2 = 13 - 16 = -3 \] This indicates an error in the calculations. ### Step 3: Calculate \(|\vec{c}|\) Now, we will calculate \(|\vec{c}|\): \[ |\vec{c}|^2 = |3(\vec{a} \times \vec{b}) - 4\vec{b}|^2 \] Using the formula for the magnitude of a vector subtraction: \[ |\vec{c}|^2 = |3(\vec{a} \times \vec{b})|^2 + |-4\vec{b}|^2 - 2 \cdot |3(\vec{a} \times \vec{b})| \cdot |-4\vec{b}| \cdot \cos(\theta) \] Where \(\theta\) is the angle between \(\vec{a} \times \vec{b}\) and \(\vec{b}\). ### Step 4: Substitute Values Now substituting values: 1. \(|3(\vec{a} \times \vec{b})|^2 = 9 |\vec{a} \times \vec{b}|^2\) 2. \(|-4\vec{b}|^2 = 16 |\vec{b}|^2 = 16 \cdot 9 = 144\) Now we need \(|\vec{a} \times \vec{b}|\): Using the correct calculations, we find: \[ |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 \] Substituting: \[ |\vec{a} \times \vec{b}|^2 = 2^2 \cdot 3^2 - 4^2 = 4 \cdot 9 - 16 = 36 - 16 = 20 \] Thus: \[ |\vec{a} \times \vec{b}| = \sqrt{20} = 2\sqrt{5} \] ### Step 5: Final Calculation Now substituting back into \(|\vec{c}|^2\): \[ |\vec{c}|^2 = 9 \cdot 20 + 144 - 2 \cdot 3 \cdot 4 \cdot \cos(\theta) \] Assuming \(\theta = 90^\circ\) (since \(\vec{a} \times \vec{b}\) is perpendicular to both): \[ |\vec{c}|^2 = 180 + 144 = 324 \] Thus: \[ |\vec{c}| = \sqrt{324} = 18 \] ### Conclusion Therefore, the magnitude of \(\vec{c}\) is: \[ |\vec{c}| = 18 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .