Home
Class 12
MATHS
The value of lim(xrarroo)[(e)/((1+(1)/(x...

The value of `lim_(xrarroo)[(e)/((1+(1)/(x))^(x))]^(x)` is equal to

A

e

B

`e^(-1)`

C

`e^((1)/(2))`

D

`e^(-(1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{e}{\left(1 + \frac{1}{x}\right)^x} \right)^x \), we will proceed step by step. ### Step 1: Rewrite the limit We start with the expression: \[ \lim_{x \to \infty} \left( \frac{e}{\left(1 + \frac{1}{x}\right)^x} \right)^x \] We can rewrite this as: \[ = \lim_{x \to \infty} \frac{e^x}{\left(1 + \frac{1}{x}\right)^{x^2}} \] ### Step 2: Analyze the denominator Next, we need to analyze the term \( \left(1 + \frac{1}{x}\right)^{x^2} \). Using the property that \( \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e \), we can express: \[ \left(1 + \frac{1}{x}\right)^{x} \approx e \quad \text{as } x \to \infty \] Thus, \[ \left(1 + \frac{1}{x}\right)^{x^2} = \left(\left(1 + \frac{1}{x}\right)^{x}\right)^{x} \approx e^x \] ### Step 3: Substitute back into the limit Now substituting this back into our limit, we have: \[ \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1 \] ### Step 4: Final expression Thus, the value of the limit is: \[ \lim_{x \to \infty} \left( \frac{e}{\left(1 + \frac{1}{x}\right)^x} \right)^x = 1 \] ### Conclusion Therefore, the final answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

The value of lim_(xrarroo)((x+6)/(x+1))^(x+4) , is

lim_(xrarroo) (2x)/(1+4x)

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(xrarroo) x^(1//x) equals

The value of lim_(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is

The value of lim_(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

The value of : lim_(xrarroo)("log" x)/(x) is: