Home
Class 12
MATHS
If lim(nrarroo)Sigma(r=1)^(2n)(3r^(2))/(...

If `lim_(nrarroo)Sigma_(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a)-e^(b)`, then `a+b` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{3r^2}{n^3} e^{\frac{r^3}{n^3}} \] and express it in the form \( e^a - e^b \) to find \( a + b \). ### Step 1: Rewrite the Sum We can rewrite the sum as follows: \[ \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{3r^2}{n^3} e^{\frac{r^3}{n^3}} = \lim_{n \to \infty} \sum_{r=1}^{2n} 3 \left(\frac{r}{n}\right)^2 \frac{1}{n} e^{\left(\frac{r}{n}\right)^3} \] Here, we have factored out \( \frac{1}{n} \) and expressed \( r^2 \) in terms of \( \frac{r}{n} \). ### Step 2: Identify the Integral As \( n \to \infty \), the sum approaches the integral: \[ \int_0^2 3x^2 e^{x^3} \, dx \] where \( x = \frac{r}{n} \) and the limits change from \( \frac{1}{n} \) to \( \frac{2n}{n} = 2 \). ### Step 3: Evaluate the Integral To evaluate the integral, we can use substitution. Let: \[ t = e^{x^3} \implies dt = 3x^2 e^{x^3} \, dx \] Thus, we have: \[ dx = \frac{dt}{3x^2 e^{x^3}} = \frac{dt}{3t} \] Now we need to change the limits of integration. When \( x = 0 \), \( t = e^{0^3} = 1 \), and when \( x = 2 \), \( t = e^{2^3} = e^8 \). The integral becomes: \[ \int_1^{e^8} dt = e^8 - 1 \] ### Step 4: Relate to the Given Expression The limit we evaluated is: \[ \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{3r^2}{n^3} e^{\frac{r^3}{n^3}} = e^8 - 1 \] We can express this as: \[ e^8 - e^0 \] ### Step 5: Identify \( a \) and \( b \) From the expression \( e^a - e^b \), we have: - \( a = 8 \) - \( b = 0 \) ### Step 6: Calculate \( a + b \) Thus, we find: \[ a + b = 8 + 0 = 8 \] ### Final Answer The value of \( a + b \) is: \[ \boxed{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

Prove that Sigma_(r=1) ""^(n)C_(r).3^(r)=4^(n)