Home
Class 12
MATHS
If a, b, c in R^(+) such that a+b+c=27, ...

If `a, b, c in R^(+)` such that `a+b+c=27`, then the maximum value of `a^(2)b^(3)c^(4)` is equal to

A

`2^(8). 3^(10)`

B

`2^(9).3^(12)`

C

`2^(10).3^(12)`

D

`2^(11).3^(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( a^2 b^3 c^4 \) given that \( a + b + c = 27 \) and \( a, b, c \in \mathbb{R}^+ \), we can use the method of Lagrange multipliers or the AM-GM inequality. Here, we will use the AM-GM inequality for simplicity. ### Step-by-Step Solution: 1. **Express the constraint**: We know that \( a + b + c = 27 \). 2. **Rewrite the expression**: We want to maximize \( a^2 b^3 c^4 \). To apply the AM-GM inequality, we can express the terms in a way that matches their powers: \[ a^2 b^3 c^4 = a^{2} \cdot b^{3} \cdot c^{4} \] 3. **Set up the AM-GM inequality**: We can rewrite the terms as follows: \[ \frac{a}{2} + \frac{a}{2} + \frac{b}{3} + \frac{b}{3} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} = 27 \] This gives us 9 terms in total. 4. **Apply AM-GM**: By the AM-GM inequality, we have: \[ \frac{\frac{a}{2} + \frac{a}{2} + \frac{b}{3} + \frac{b}{3} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4}}{9} \geq \sqrt[9]{\left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right)^2 \left(\frac{c}{4}\right)^4} \] 5. **Calculate the left-hand side**: Since \( a + b + c = 27 \), we have: \[ \frac{27}{9} = 3 \] 6. **Set up the inequality**: Thus, we can write: \[ 3 \geq \sqrt[9]{\left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right)^3 \left(\frac{c}{4}\right)^4} \] 7. **Raise both sides to the 9th power**: This gives: \[ 3^9 \geq \left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right)^3 \left(\frac{c}{4}\right)^4 \] 8. **Express the right-hand side**: We can express this as: \[ 3^9 \geq \frac{a^2 b^3 c^4}{2^2 \cdot 3^3 \cdot 4^4} \] 9. **Simplify the inequality**: Rearranging gives: \[ a^2 b^3 c^4 \leq 3^9 \cdot 2^2 \cdot 3^3 \cdot 4^4 \] 10. **Calculate the maximum value**: Now, we need to compute \( 3^9 \cdot 2^2 \cdot 3^3 \cdot 4^4 \): - \( 3^9 = 19683 \) - \( 2^2 = 4 \) - \( 3^3 = 27 \) - \( 4^4 = 256 \) Therefore, \[ a^2 b^3 c^4 \leq 19683 \cdot 4 \cdot 27 \cdot 256 \] 11. **Final calculation**: \[ 19683 \cdot 4 = 78732 \] \[ 78732 \cdot 27 = 2125764 \] \[ 2125764 \cdot 256 = 544864256 \] Thus, the maximum value of \( a^2 b^3 c^4 \) is \( 544864256 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a^2b^3c^4 is equal to a. 2^(18)xx3^2 b. 2^(18)xx3^3 c. 2^(19)xx3^2 d. 2^(19)xx3^3

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of a^2b^3c^4

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a - 2b + 3c= 0 , state the value of a^(3) -8b^(3) + 27c^(3)

If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

Three numbers a, b and c are in geometric progression. If 4a, 5b and 4c are in arithmetic progression and a+b+c=70 , then the value of |c-a| is equal to

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot