Home
Class 12
MATHS
For three non - zero vectors veca, vecb ...

For three non - zero vectors `veca, vecb and vecc`, if `[(veca, vecb and vecc)]=4`, then `[vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)]`is equal to

A

12

B

16

C

84

D

144

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the scalar triple product of three vectors \( \vec{a}, \vec{b}, \vec{c} \) is equal to 4. The expression we need to evaluate is: \[ [\vec{a} \times (\vec{b} + 2\vec{c}) \quad \vec{b} \times (\vec{c} - 3\vec{a}) \quad \vec{c} \times (3\vec{a} + \vec{b})] \] ### Step 1: Expand the Cross Products We will first expand the cross products in the expression. 1. **First term**: \[ \vec{a} \times (\vec{b} + 2\vec{c}) = \vec{a} \times \vec{b} + 2(\vec{a} \times \vec{c}) \] 2. **Second term**: \[ \vec{b} \times (\vec{c} - 3\vec{a}) = \vec{b} \times \vec{c} - 3(\vec{b} \times \vec{a}) = \vec{b} \times \vec{c} + 3(\vec{a} \times \vec{b}) \quad \text{(using } \vec{x} \times \vec{y} = -(\vec{y} \times \vec{x})\text{)} \] 3. **Third term**: \[ \vec{c} \times (3\vec{a} + \vec{b}) = 3(\vec{c} \times \vec{a}) + \vec{c} \times \vec{b} \] ### Step 2: Combine the Terms Now we can combine all the terms into a single expression: \[ [\vec{a} \times \vec{b} + 2(\vec{a} \times \vec{c}) \quad \vec{b} \times \vec{c} + 3(\vec{a} \times \vec{b}) \quad 3(\vec{c} \times \vec{a}) + \vec{c} \times \vec{b}] \] This simplifies to: \[ [(\vec{a} \times \vec{b} + 3(\vec{a} \times \vec{b})) \quad (2(\vec{a} \times \vec{c})) \quad (3(\vec{c} \times \vec{a}) + \vec{c} \times \vec{b})] \] ### Step 3: Rearranging and Using Scalar Triple Product Now we can rearrange the terms and factor out the scalar triple product: \[ = [\vec{a} \times \vec{b} + 3\vec{a} \times \vec{b} \quad 2\vec{a} \times \vec{c} \quad 3\vec{c} \times \vec{a} + \vec{c} \times \vec{b}] \] Using the property of the scalar triple product: \[ [\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}] \] ### Step 4: Calculate the Result The scalar triple product is given as: \[ [\vec{a}, \vec{b}, \vec{c}] = 4 \] Thus, we can express the final determinant as: \[ = 9 \cdot [\vec{a}, \vec{b}, \vec{c}]^2 = 9 \cdot (4)^2 = 9 \cdot 16 = 144 \] ### Final Answer The value of the expression is: \[ \boxed{144} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to