Home
Class 12
MATHS
Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x...

Let `A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)]` be a matrix. If `A^(2)=A`, then the value of x is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the matrix \( A \) satisfies the equation \( A^2 = A \). The matrix \( A \) is given as: \[ A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply the matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \] ### Step 2: Perform the matrix multiplication We will compute each element of the resulting matrix \( A^2 \): 1. **First row, first column**: \[ 2 \cdot 2 + (-1) \cdot (-2) + 1 \cdot (-4) = 4 + 2 - 4 = 2 \] 2. **First row, second column**: \[ 2 \cdot (-1) + (-1) \cdot 3 + 1 \cdot 4 = -2 - 3 + 4 = -1 \] 3. **First row, third column**: \[ 2 \cdot 1 + (-1) \cdot (-1) + 1 \cdot (-x) = 2 + 1 - x = 3 - x \] 4. **Second row, first column**: \[ -2 \cdot 2 + 3 \cdot (-2) + (-1) \cdot (-4) = -4 - 6 + 4 = -6 \] 5. **Second row, second column**: \[ -2 \cdot (-1) + 3 \cdot 3 + (-1) \cdot 4 = 2 + 9 - 4 = 7 \] 6. **Second row, third column**: \[ -2 \cdot 1 + 3 \cdot (-1) + (-1) \cdot (-x) = -2 - 3 + x = x - 5 \] 7. **Third row, first column**: \[ -4 \cdot 2 + 4 \cdot (-2) + (-x) \cdot (-4) = -8 - 8 + 4x = 4x - 16 \] 8. **Third row, second column**: \[ -4 \cdot (-1) + 4 \cdot 3 + (-x) \cdot 4 = 4 + 12 - 4x = 16 - 4x \] 9. **Third row, third column**: \[ -4 \cdot 1 + 4 \cdot (-1) + (-x) \cdot (-x) = -4 - 4 + x^2 = x^2 - 8 \] Putting it all together, we have: \[ A^2 = \begin{pmatrix} 2 & -1 & 3 - x \\ -6 & 7 & x - 5 \\ 4x - 16 & 16 - 4x & x^2 - 8 \end{pmatrix} \] ### Step 3: Set \( A^2 = A \) Now we set \( A^2 \) equal to \( A \): \[ \begin{pmatrix} 2 & -1 & 3 - x \\ -6 & 7 & x - 5 \\ 4x - 16 & 16 - 4x & x^2 - 8 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \] ### Step 4: Compare corresponding elements From the first row, third column: \[ 3 - x = 1 \implies x = 2 \] ### Step 5: Verify other elements We can check the other elements to ensure consistency: 1. From the second row, first column: \[ -6 = -2 \quad \text{(not needed for x)} \] 2. From the second row, third column: \[ x - 5 = -1 \implies x = 4 \quad \text{(not consistent)} \] 3. From the third row, first column: \[ 4x - 16 = -4 \implies 4x = 12 \implies x = 3 \quad \text{(not consistent)} \] 4. From the third row, third column: \[ x^2 - 8 = -x \implies x^2 + x - 8 = 0 \] Solving this quadratic gives us \( x = 2 \) or \( x = -4 \). ### Conclusion The value of \( x \) that satisfies \( A^2 = A \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and det. (B)=4 , then the value of x is ______ .

Let A=[(1, 2), (3,-5)] and B=[(1, 0), (0, 2)] and X be a matrix such that A=B X , then X is equal to (a) 1/2[(2, 4), (3, -5)] (b) 1/2[(-2, 4), (3, 5)] (c) [(2, 4), (3,-5)] (d) none of these

The matrix [(5 ,1 ,0), (3 ,-2 ,-4 ), (6 ,-1 ,-2b)] is a singular matrix, if the value of b is ?

If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix A and |A| = 4 , then alpha is equal to

If |(x+1,x-1),(x-3,x+2)|=|(4,-1),(1,3)| , then write the value of x .

If |(x+1,x-1),(x-3,x+2)|=|(4,-1),(1,3)| , then write the value of x .

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is