Home
Class 12
MATHS
If the points A(3-x, 3, 3), B(3, 3-y, 3)...

If the points `A(3-x, 3, 3), B(3, 3-y, 3), C(3, 3, 3-z) and D(2, 2, 2)` are coplanar, then `(1)/(x)+(1)/(y)+(1)/(z)` is equal to

A

`-1`

B

1

C

3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\) given that the points \(A(3-x, 3, 3)\), \(B(3, 3-y, 3)\), \(C(3, 3, 3-z)\), and \(D(2, 2, 2)\) are coplanar, we can follow these steps: ### Step 1: Find the vectors \( \overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{DC} \) The vectors from point \(D\) to points \(A\), \(B\), and \(C\) are calculated as follows: \[ \overrightarrow{DA} = A - D = (3-x - 2, 3 - 2, 3 - 2) = (1-x, 1, 1) \] \[ \overrightarrow{DB} = B - D = (3 - 2, 3-y - 2, 3 - 2) = (1, 1-y, 1) \] \[ \overrightarrow{DC} = C - D = (3 - 2, 3 - 2, 3-z - 2) = (1, 1, 1-z) \] ### Step 2: Set up the determinant for coplanarity The points \(A\), \(B\), \(C\), and \(D\) are coplanar if the scalar triple product of the vectors \(\overrightarrow{DA}\), \(\overrightarrow{DB}\), and \(\overrightarrow{DC}\) is zero. This can be expressed using the determinant: \[ \begin{vmatrix} 1-x & 1 & 1 \\ 1 & 1-y & 1 \\ 1 & 1 & 1-z \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant, we expand it: \[ = (1-x) \begin{vmatrix} 1-y & 1 \\ 1 & 1-z \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 1-z \end{vmatrix} + 1 \begin{vmatrix} 1 & 1-y \\ 1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1-y & 1 \\ 1 & 1-z \end{vmatrix} = (1-y)(1-z) - 1 = 1 - y - z + yz - 1 = -y - z + yz\) 2. \(\begin{vmatrix} 1 & 1 \\ 1 & 1-z \end{vmatrix} = 1(1-z) - 1 = 1 - z - 1 = -z\) 3. \(\begin{vmatrix} 1 & 1-y \\ 1 & 1 \end{vmatrix} = 1(1) - 1(1-y) = 1 - (1-y) = y\) Substituting these back into the determinant gives: \[ (1-x)(-y - z + yz) - (-z) + y = 0 \] ### Step 4: Simplify the equation Expanding this gives: \[ -(1-x)(y + z - yz) + z + y = 0 \] Distributing \(-(1-x)\): \[ -(y + z - yz) + x(y + z - yz) + z + y = 0 \] Rearranging gives: \[ x(y + z - yz) + z + y - (y + z - yz) = 0 \] This simplifies to: \[ x(y + z - yz) + yz = 0 \] ### Step 5: Solve for \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\) From the coplanarity condition, we can express the relationship: \[ x(yz - y - z) = 0 \] This implies \(x + y + z = xyz\) when rearranged. Dividing through by \(xyz\) gives: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \] ### Final Answer Thus, we find that: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b and c are non - zero real numbers and if system of equations (a-1)x=y+z, (b-1)y=z+x and (c-1)z=x+y have a non - trivial solutin, then (3)/(2a)+(3)/(2b)+(3)/(2c) is equal to

If the lines (x+4)/3=(y+6)/5=(z-1)/(-2) and 3x-2y+z+5=0=2x+3y+4z-k are coplanar, then k= (a) -4 (2) 3 (3) 2 (4) 4 (5) 1

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

Show that the coordinates off the centroid of the triangle with vertices A(x_1, y_1, z_1),\ B(x_2, y_2, z_2)a n d\ (x_3, y_3, z_3) are ((x_1+x_2+x_3)/3,(y_1+y_2+y_3)/3,(z_1+z_2+z_3)/3)

The equation of the plane thorugh the point (-1,2,0) and parallel to the lines x/3=(y+1)/0=(z-2)/(-1) and (x-1)/1=(2y+1)/2=(z+1)/(-1) is (A) 2x+3y+6z-4=0 (B) x-2y+3z+5=0 (C) x+y-3z+1=0 (D) x+y+3z-1=0

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

Show that the centroid of the triangle with vertices A(x_1,\ y_1,\ z_1) , B(x_2,\ y_2,\ z_2) and A(x_3,\ y_3,\ z_3) has the coordinates (("x"_1+"x"_2+"x"_2)/3,("y"_1+"y"_2+"y"_2,)/3("z"_1+"z"_2+"z"_2)/3)

The plane containing the line (x-3)/(2)=(y-b)/(4)=(z-3)/(3) passes through the points (a, 1, 2), (2, 1, 4), (2, 3, 5) , then 3a+5b is equal to

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)