Home
Class 12
MATHS
In triangle A B C , if sinAcosB=1/4a n d...

In triangle `A B C ,` if `sinAcosB=1/4a n d3t a n A=t a n B ,t h e ncot^2A` is equal to 2 (b) 3 (c) 4 (d) 5.

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given information and trigonometric identities. ### Step 1: Write down the given equations We are given: 1. \( \sin A \cos B = \frac{1}{4} \) 2. \( 3 \tan A = \tan B \) ### Step 2: Express \( \tan A \) and \( \tan B \) in terms of sine and cosine Recall that: \[ \tan A = \frac{\sin A}{\cos A} \quad \text{and} \quad \tan B = \frac{\sin B}{\cos B} \] From the second equation, we can rewrite it as: \[ 3 \frac{\sin A}{\cos A} = \frac{\sin B}{\cos B} \] Rearranging gives: \[ 3 \sin A \cos B = \sin B \cos A \] ### Step 3: Substitute the value of \( \sin A \cos B \) We know from the first equation that \( \sin A \cos B = \frac{1}{4} \). Substituting this into the equation gives: \[ 3 \cdot \frac{1}{4} = \sin B \cos A \] This simplifies to: \[ \frac{3}{4} = \sin B \cos A \] ### Step 4: Use the sine addition formula The sine addition formula states: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] Substituting the known values: \[ \sin A \cos B + \sin B \cos A = \frac{1}{4} + \frac{3}{4} = 1 \] This implies: \[ \sin(A + B) = 1 \] Thus, we have: \[ A + B = \frac{\pi}{2} \] ### Step 5: Relate \( B \) to \( A \) From \( A + B = \frac{\pi}{2} \), we can express \( B \) as: \[ B = \frac{\pi}{2} - A \] ### Step 6: Find \( \tan B \) Using the identity for tangent: \[ \tan B = \tan\left(\frac{\pi}{2} - A\right) = \cot A \] Thus, we have: \[ 3 \tan A = \cot A \] ### Step 7: Multiply both sides by \( \tan A \) Multiplying both sides by \( \tan A \) gives: \[ 3 \tan^2 A = 1 \] From this, we can express \( \tan^2 A \) as: \[ \tan^2 A = \frac{1}{3} \] ### Step 8: Find \( \cot^2 A \) Recall that: \[ \cot A = \frac{1}{\tan A} \] Thus: \[ \cot^2 A = \frac{1}{\tan^2 A} = \frac{1}{\frac{1}{3}} = 3 \] ### Conclusion The value of \( \cot^2 A \) is \( 3 \). ### Final Answer The correct option is (b) 3. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A is equal to

In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A is equal to (a)2 (b) 3 (c) 4 (d) 5.

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

In a triangle A B C , right angled at C ,t a n A+t a n B is equal to a. a+b b. (c^2)/(a b) c. (a^2)/(b c) d. (b^2)/(a c)

If A-B=pi//4 , then (1+t a n A)(1-t a n B) is equal to 2 b. 1 c. 0 d. 3

If tanA.tanB=1/2,t h e n(5-3cos2A)(5-3cos2B)= (a)2 (b) 8 (c) 12 (d) 16

If t a n A+cot A=4, then tan^4A+cot^4A is equal to 110 b. 191 c. 80 d. 194

In a triangle A B C , if a : b : c=3:7:8,t h e n R : r is equal to a. 2:7 b. 7:2 c. 3:7 d. 7:3

If y=(1+t a n A)(1-t a n B), where A-B=pi/4, then (y+1)^(y+1) is equal to 9 (b) 4 (c) 27 (d) 81

If A is a square matrix such that A^2=A ,t h e n(I+A)^3-7A is equal to (a) A (b) I-A (c) I (d) 3A