Home
Class 12
MATHS
If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-……...

If `cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-……..)=(pi)/(2)" for "0lt |x| lt sqrt2`, then x is equal to

A

0 only

B

1 only

C

0, 1 both

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cot^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4} - \ldots\right) + \tan^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \ldots\right) = \frac{\pi}{2} \] for \(0 < |x| < \sqrt{2}\), we will first analyze the series involved in both the cotangent and tangent inverse functions. ### Step 1: Identify the series for \(\cot^{-1}\) The series for \(\cot^{-1}\) can be expressed as: \[ S_1 = x - \frac{x^2}{2} + \frac{x^3}{4} - \ldots \] This is an infinite series where the first term \(a = x\) and the common ratio \(r = -\frac{x}{2}\). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S_1 = \frac{x}{1 - \left(-\frac{x}{2}\right)} = \frac{x}{1 + \frac{x}{2}} = \frac{x}{\frac{2 + x}{2}} = \frac{2x}{2 + x} \] ### Step 2: Identify the series for \(\tan^{-1}\) The series for \(\tan^{-1}\) can be expressed as: \[ S_2 = x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \ldots \] This series has the first term \(a = x^2\) and the common ratio \(r = -\frac{x^2}{2}\). Using the same formula for the sum of an infinite series: \[ S_2 = \frac{x^2}{1 - \left(-\frac{x^2}{2}\right)} = \frac{x^2}{1 + \frac{x^2}{2}} = \frac{x^2}{\frac{2 + x^2}{2}} = \frac{2x^2}{2 + x^2} \] ### Step 3: Substitute the series sums into the equation Now substituting \(S_1\) and \(S_2\) back into the original equation: \[ \cot^{-1}\left(\frac{2x}{2 + x}\right) + \tan^{-1}\left(\frac{2x^2}{2 + x^2}\right) = \frac{\pi}{2} \] ### Step 4: Use the identity for cotangent and tangent Using the identity \(\tan^{-1}(y) + \cot^{-1}(y) = \frac{\pi}{2}\), we can set: \[ \frac{2x}{2 + x} = \frac{2x^2}{2 + x^2} \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ 2x(2 + x^2) = 2x^2(2 + x) \] Expanding both sides: \[ 4x + 2x^3 = 4x^2 + 2x^3 \] ### Step 6: Cancel and rearrange Cancelling \(2x^3\) from both sides: \[ 4x = 4x^2 \] Dividing both sides by 4: \[ x = x^2 \] ### Step 7: Solve for \(x\) Rearranging gives: \[ x^2 - x = 0 \] Factoring out \(x\): \[ x(x - 1) = 0 \] Thus, \(x = 0\) or \(x = 1\). Since we are given \(0 < |x| < \sqrt{2}\), we discard \(x = 0\) and keep: \[ x = 1 \] ### Conclusion The value of \(x\) that satisfies the equation is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(- 1)(x-(x^2)/2+(x^3)/4-.....)+cos^(- 1)(x^2-(x^4)/2+(x^6)/4-.....)=pi/2 for 0 lt |x| lt sqrt2 then x=

If |x|lt1 and y=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+... , then x =

tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Let 0lt x lepi//4, (sec 2x-tan2x) equals

If cos x-sinx=-(5)/(4) , where (pi)/(2)ltx lt(3pi)/(4) , then cot((x)/(2)) is equal to

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is