Home
Class 12
MATHS
Let veca and vecb are unit vectors such ...

Let `veca and vecb` are unit vectors such that `|veca+vecb|=(3)/(2)`, then the value of `(2veca+7vecb).(4veca+3vecb+2020vecaxxvecb)` is equal to

A

`(133)/(4)`

B

133

C

30

D

120

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) such that \(|\vec{a}| = 1\), \(|\vec{b}| = 1\), and \(|\vec{a} + \vec{b}| = \frac{3}{2}\). ### Step 2: Square the equation We square the equation \(|\vec{a} + \vec{b}| = \frac{3}{2}\): \[ |\vec{a} + \vec{b}|^2 = \left(\frac{3}{2}\right)^2 \] This gives us: \[ |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = \frac{9}{4} \] Since \(|\vec{a}|^2 = 1\) and \(|\vec{b}|^2 = 1\), we have: \[ 1 + 1 + 2\vec{a} \cdot \vec{b} = \frac{9}{4} \] Thus, \[ 2 + 2\vec{a} \cdot \vec{b} = \frac{9}{4} \] Subtracting 2 from both sides: \[ 2\vec{a} \cdot \vec{b} = \frac{9}{4} - 2 = \frac{9}{4} - \frac{8}{4} = \frac{1}{4} \] So, \[ \vec{a} \cdot \vec{b} = \frac{1}{8} \] ### Step 3: Calculate the dot product Now we need to find the value of \((2\vec{a} + 7\vec{b}) \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b})\). Expanding this dot product: \[ (2\vec{a} + 7\vec{b}) \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b}) = 2\vec{a} \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b}) + 7\vec{b} \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b}) \] ### Step 4: Calculate each term Calculating the first term: \[ 2\vec{a} \cdot (4\vec{a}) + 2\vec{a} \cdot (3\vec{b}) + 2\vec{a} \cdot (2020\vec{a} \times \vec{b}) \] \[ = 8 + 6\vec{a} \cdot \vec{b} + 0 \quad (\text{since } \vec{a} \cdot (\vec{a} \times \vec{b}) = 0) \] Substituting \(\vec{a} \cdot \vec{b} = \frac{1}{8}\): \[ = 8 + 6 \cdot \frac{1}{8} = 8 + \frac{6}{8} = 8 + \frac{3}{4} = 8.75 \] Now for the second term: \[ 7\vec{b} \cdot (4\vec{a}) + 7\vec{b} \cdot (3\vec{b}) + 7\vec{b} \cdot (2020\vec{a} \times \vec{b}) \] \[ = 28\vec{b} \cdot \vec{a} + 21 + 0 \quad (\text{since } \vec{b} \cdot (\vec{a} \times \vec{b}) = 0) \] Substituting \(\vec{b} \cdot \vec{a} = \frac{1}{8}\): \[ = 28 \cdot \frac{1}{8} + 21 = \frac{28}{8} + 21 = 3.5 + 21 = 24.5 \] ### Step 5: Combine the results Now, we combine both parts: \[ 8.75 + 24.5 = 33.25 \] ### Final Result Thus, the value of \((2\vec{a} + 7\vec{b}) \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b})\) is: \[ \boxed{33.25} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Evaluate: (3veca-5vecb).(2veca+7vecb)

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is