Home
Class 12
MATHS
If (sin^(3)theta-cos^(3)theta)/(sin thet...

If `(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi],` then

A

`theta in (0, (pi)/(2))-{(pi)/(4)}`

B

`theta in ((pi)/(2),pi)-{(3pi)/(4)}`

C

`theta in (pi, (3pi)/(2))-{(5pi)/(4)}`

D

`theta in (0, pi)-{(pi)/(4), (pi)/(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta - \cos \theta} - \frac{\cos \theta}{\sqrt{1 + \cot^2 \theta}} - 2 \tan \theta \cot \theta = -1, \] we will follow these steps: ### Step 1: Simplify the first term The expression \(\sin^3 \theta - \cos^3 \theta\) can be factored using the identity for the difference of cubes: \[ \sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta)(\sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta). \] Thus, we can simplify the first term: \[ \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta - \cos \theta} = \sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta. \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we can further simplify: \[ \sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta = 1 + \sin \theta \cos \theta. \] ### Step 2: Simplify the second term Next, we simplify the second term: \[ \sqrt{1 + \cot^2 \theta} = \sqrt{\csc^2 \theta} = |\csc \theta|. \] Thus, the second term becomes: \[ -\frac{\cos \theta}{|\csc \theta|} = -\cos \theta \cdot \sin \theta = -\sin \theta \cos \theta. \] ### Step 3: Simplify the third term The third term is: \[ -2 \tan \theta \cot \theta = -2. \] ### Step 4: Combine all terms Now we can combine all the simplified terms: \[ 1 + \sin \theta \cos \theta - \sin \theta \cos \theta - 2 = -1. \] This simplifies to: \[ 1 - 2 = -1. \] ### Step 5: Solve the equation The equation holds true, which means we need to find the values of \(\theta\) in the interval \([0, 2\pi]\) where the conditions are satisfied. ### Step 6: Analyze the conditions 1. **Condition for \(\sin \theta\) and \(\cos \theta\)**: - \(\sin \theta > 0\) implies \(\theta\) is in the first or second quadrant. - \(\sin \theta - \cos \theta \neq 0\) implies \(\theta \neq \frac{\pi}{4}\) and \(\theta \neq \frac{5\pi}{4}\). - \(\cos \theta \neq 0\) implies \(\theta \neq \frac{\pi}{2}\) and \(\theta \neq \frac{3\pi}{2}\). ### Step 7: Determine the valid intervals From the above conditions, the valid intervals for \(\theta\) are: - First quadrant: \((0, \frac{\pi}{4})\) - Second quadrant: \((\frac{\pi}{4}, \frac{\pi}{2})\) Thus, the solution for \(\theta\) is in the intervals: \[ \theta \in (0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \frac{3\pi}{2}) \cup (\frac{3\pi}{2}, \frac{5\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi). \] ### Final Answer The solution set for \(\theta\) in the interval \([0, 2\pi]\) is: \[ \theta \in (0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \frac{3\pi}{2}) \cup (\frac{3\pi}{2}, \frac{5\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi). \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(sin^3theta-cos^3theta)/(sintheta-costheta)-(costheta)/(sqrt(1+cot^2theta))-2tanthetacottheta=-1 if theta in (0,pi/2) (b) theta in (pi/2,pi) theta in (pi,(3pi)/2) (d) theta in ((3pi)/2,2pi)

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Prove that (sin theta- "cosec" theta )(cos theta- sec theta )=(1)/(tan theta + cot theta).

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.