Home
Class 12
MATHS
For the series S=1+(1)/((1+3))(1+2)^(2)+...

For the series `S=1+(1)/((1+3))(1+2)^(2)+(1)/((1+3+5))(1+2+3)^(2)+(1)/((1+3+5+7))(1+2+3+4)^(2)+……………..,` if the `7^("th")` term is K, then `(K)/(4)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( S = 1 + \frac{1}{(1+3)(1+2)^2} + \frac{1}{(1+3+5)(1+2+3)^2} + \frac{1}{(1+3+5+7)(1+2+3+4)^2} + \ldots \), we need to find the 7th term \( K \) and then compute \( \frac{K}{4} \). ### Step-by-Step Solution: 1. **Identify the General Term**: The \( r \)-th term can be expressed as: \[ T_r = \frac{1}{(1 + 3 + 5 + \ldots + (2r - 1))(1 + 2 + 3 + \ldots + r)^2} \] 2. **Sum of Odd Numbers**: The sum of the first \( r \) odd numbers is given by: \[ 1 + 3 + 5 + \ldots + (2r - 1) = r^2 \] Therefore, the denominator becomes \( r^2 \). 3. **Sum of Natural Numbers**: The sum of the first \( r \) natural numbers is: \[ 1 + 2 + 3 + \ldots + r = \frac{r(r + 1)}{2} \] Thus, the square of this sum is: \[ \left( \frac{r(r + 1)}{2} \right)^2 = \frac{r^2(r + 1)^2}{4} \] 4. **Substituting into the General Term**: Now substituting these results into the expression for \( T_r \): \[ T_r = \frac{1}{r^2 \cdot \frac{r^2(r + 1)^2}{4}} = \frac{4}{r^4(r + 1)^2} \] 5. **Finding the 7th Term**: To find the 7th term \( K \), set \( r = 7 \): \[ T_7 = \frac{4}{7^4(7 + 1)^2} = \frac{4}{7^4 \cdot 8^2} \] 6. **Calculating \( 7^4 \) and \( 8^2 \)**: - \( 7^4 = 2401 \) - \( 8^2 = 64 \) Therefore: \[ T_7 = \frac{4}{2401 \cdot 64} \] 7. **Calculating \( K \)**: \[ K = \frac{4}{2401 \cdot 64} \] 8. **Finding \( \frac{K}{4} \)**: \[ \frac{K}{4} = \frac{1}{2401 \cdot 64} \] ### Final Calculation: Now we compute \( 2401 \cdot 64 \): \[ 2401 \cdot 64 = 153664 \] Thus, we have: \[ \frac{K}{4} = \frac{1}{153664} \] ### Conclusion: The final answer is: \[ \frac{K}{4} = \frac{1}{153664} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For the series, S=1+1/((1+3))(1+2)^2+1/((1+3+5))(1+2+3)^2+1/((1+3+5+7))(1+2+3+4)^2 +... 7th term is 16 7th term is 18 Sum of first 10 terms is (505)/4 Sum of first 10 terms is (45)/4

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

Sum to n terms the series (3)/(1 ^(2) . 2 ^(2)) + (5)/( 2 ^(2) . 3 ^(2)) + (7)/( 3 ^(2) . 4 ^(2)) +.............

Sum of n terms of the series (1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+…. is equal to

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

The n ^(th) terms of the series 1 + (4)/(5) + (7)/(5 ^(2)) + (10)/(5 ^(3)) +………. is

Then sum of the series 1+(1+3)/(2!)x+(1+3+5)/(3!)x^(2)+(1+3+5+7)/(4!)x^(3) x+…is

The sum to n terms of [(1)/(1.3)+(2)/(1.3.5)+(3)/(1.3.5.7)+(4)/(1.3.5.7.9)+…………]