Home
Class 12
MATHS
The projection of 2hati-3hatj+4hatk on t...

The projection of `2hati-3hatj+4hatk` on the line whose equation is `vecr=(3+lambda)hati+(3-2lambda)hatj+(5+6lambda)hatk`, where `lambda` is a scalar parameter, is

A

`(6)/(sqrt(41))`

B

`(32)/(sqrt(41))`

C

`(16)/(sqrt(41))`

D

`(7)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \( \mathbf{c} = 2\hat{i} - 3\hat{j} + 4\hat{k} \) on the line given by the equation \( \mathbf{r} = (3 + \lambda)\hat{i} + (3 - 2\lambda)\hat{j} + (5 + 6\lambda)\hat{k} \), we can follow these steps: ### Step 1: Identify the direction vector of the line The line can be expressed in the standard form \( \mathbf{r} = \mathbf{a} + \lambda \mathbf{b} \), where \( \mathbf{a} \) is a point on the line and \( \mathbf{b} \) is the direction vector. From the equation given: \[ \mathbf{r} = (3 + \lambda)\hat{i} + (3 - 2\lambda)\hat{j} + (5 + 6\lambda)\hat{k} \] we can rewrite it as: \[ \mathbf{r} = 3\hat{i} + 3\hat{j} + 5\hat{k} + \lambda(\hat{i} - 2\hat{j} + 6\hat{k}) \] Thus, the direction vector \( \mathbf{b} \) is: \[ \mathbf{b} = \hat{i} - 2\hat{j} + 6\hat{k} \] ### Step 2: Calculate the projection of vector \( \mathbf{c} \) on vector \( \mathbf{b} \) The formula for the projection of vector \( \mathbf{c} \) onto vector \( \mathbf{b} \) is given by: \[ \text{proj}_{\mathbf{b}} \mathbf{c} = \frac{\mathbf{c} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} \] ### Step 3: Compute the dot product \( \mathbf{c} \cdot \mathbf{b} \) Calculating the dot product: \[ \mathbf{c} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] \[ \mathbf{b} = \hat{i} - 2\hat{j} + 6\hat{k} \] \[ \mathbf{c} \cdot \mathbf{b} = (2)(1) + (-3)(-2) + (4)(6) = 2 + 6 + 24 = 32 \] ### Step 4: Calculate the magnitude of vector \( \mathbf{b} \) The magnitude of vector \( \mathbf{b} \) is: \[ |\mathbf{b}| = \sqrt{(1)^2 + (-2)^2 + (6)^2} = \sqrt{1 + 4 + 36} = \sqrt{41} \] ### Step 5: Calculate the projection Now substituting back into the projection formula: \[ \text{proj}_{\mathbf{b}} \mathbf{c} = \frac{32}{41} \mathbf{b} \] Thus, the projection of \( \mathbf{c} \) on the line is: \[ \text{proj}_{\mathbf{b}} \mathbf{c} = \frac{32}{41} (\hat{i} - 2\hat{j} + 6\hat{k}) \] ### Final Answer The projection of the vector \( 2\hat{i} - 3\hat{j} + 4\hat{k} \) on the line is: \[ \frac{32}{41} \hat{i} - \frac{64}{41} \hat{j} + \frac{192}{41} \hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The projection of hati+hatj+hatk on the whole equation is vecr=(3+lamda)hati+(2lamda-1)hatj+3lamda hatk, lamda being the scalar parameter is:

The Cartesian equation of the plane vecr=(1+lambda-mu)hati+(2-lambda)hatj+(3-2lambda+2mu)hatk is

Find the cartesian form of the equation of the plane. vecr=(lambda-mu)hati+(1-mu)hatj+(2lambda+3mu)hatk

Find the shortest distance between the lines whose vector equations are vecr=hati(1+2lambda)+hatj(1-lambda)+lambda hatk and vecr=hati(2+3mu)+hatj(1-5 mu)+hatk(2mu-1)

Find the image of the point (3hati-hatj+11hatk) in the line vecr = 2 hatj + 3hatk+lambda(2hati+3hatj+4hatk) .

Convert the equation of the plane vecr = (hati-hatj)+lambda(-hati+hatj+2hatk)+mu(hati+2hatj+hatk) into scalar product form.

If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendicular, then lambda is equal to

The line vecr = 2hati - 3 hatj - hatk + lamda ( hati - hatj + 2 hatk ) lies in the plane vecr. (3 hati + hatj - hatk) + 2=0 or not

Find the shortest distance between the lines l_(1)and l_(1) whose vector equations are vecr=(hati+hatj) + lambda (3hati + 4hatj - 2hatk) …(i) and vecr=(2hati+3hatj) + mu (6hati + 8hatj - 4hatk) …(ii)

Find the vector equation of the following plane in product form vecr = ( hati-hatk)+lambda(hati+2hatj)+mu(hati+3hatj-hatk) .