Home
Class 12
MATHS
Consider I=int(0)^(1)(dx)/(1+x^(5)). The...

Consider `I=int_(0)^(1)(dx)/(1+x^(5)).` Then, I satisfies

A

`I gt 1`

B

`I=1`

C

`I lt1`

D

`I+1 lt0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{dx}{1 + x^5} \) and determine the bounds for \( I \), we can follow these steps: ### Step 1: Identify the bounds of the function We know that \( 1 + x^5 \) is a continuous and increasing function for \( x \) in the interval \( [0, 1] \). - At \( x = 0 \): \[ 1 + 0^5 = 1 \] - At \( x = 1 \): \[ 1 + 1^5 = 2 \] Thus, we have: \[ 1 < 1 + x^5 < 2 \quad \text{for } x \in [0, 1] \] ### Step 2: Take the reciprocal Taking the reciprocal of the inequality (and reversing the inequality signs), we get: \[ \frac{1}{2} < \frac{1}{1 + x^5} < 1 \quad \text{for } x \in [0, 1] \] ### Step 3: Integrate the inequalities Now, we can integrate the entire inequality from 0 to 1: \[ \int_{0}^{1} \frac{1}{2} \, dx < \int_{0}^{1} \frac{1}{1 + x^5} \, dx < \int_{0}^{1} 1 \, dx \] Calculating the integrals: - The left integral: \[ \int_{0}^{1} \frac{1}{2} \, dx = \frac{1}{2} \cdot (1 - 0) = \frac{1}{2} \] - The right integral: \[ \int_{0}^{1} 1 \, dx = 1 \cdot (1 - 0) = 1 \] ### Step 4: Combine the results Thus, we have: \[ \frac{1}{2} < I < 1 \] ### Conclusion This means that the value of \( I \) satisfies: \[ \frac{1}{2} < I < 1 \] Therefore, we conclude that \( I < 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider A=int_(0)^(1)(dx)/(1+x^(3)) , then A satisfies

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

The integral I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx satisfies

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

Let I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx , I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2))) Then find the value of (I_(1))/(I_(2)) .

If I= int_(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I less is