Home
Class 12
MATHS
The value of lim(xrarr1)(sqrtpi-sqrt(4ta...

The value of `lim_(xrarr1)(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x))` is equal to

A

`sqrtpi`

B

`(1)/(sqrt(2pi))`

C

`sqrt((pi)/(2))`

D

`(2)/(sqrt(pi))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

Evaluate : lim_(xrarr0) (sqrt(1+x)-sqrt(1-x))/( x)

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to