Home
Class 12
MATHS
Three positive acute angles alpha, beta ...

Three positive acute angles `alpha, beta and gamma` satisfy the relation `tan. (beta)/(2)=(1)/(3)cot.(alpha)/(2)and cot.(gamma)/(2)=(1)/(2)(3tan.(alpha)/(2)+cot.(alpha)/(2))`. Then, the value of `alpha+beta+gamma` is equal to

A

`pi`

B

`2pi`

C

`(pi)/(2)`

D

`(3pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations involving the angles α, β, and γ: 1. **Given Equations**: - \( \tan\left(\frac{\beta}{2}\right) = \frac{1}{3} \cot\left(\frac{\alpha}{2}\right) \) - \( \cot\left(\frac{\gamma}{2}\right) = \frac{1}{2}\left(3\tan\left(\frac{\alpha}{2}\right) + \cot\left(\frac{\alpha}{2}\right)\right) \) 2. **Convert Cotangent to Tangent**: - Recall that \( \cot\left(\theta\right) = \frac{1}{\tan\left(\theta\right)} \). - Thus, we can rewrite the first equation: \[ \tan\left(\frac{\beta}{2}\right) = \frac{1}{3} \cdot \frac{1}{\tan\left(\frac{\alpha}{2}\right)} = \frac{1}{3\tan\left(\frac{\alpha}{2}\right)} \] 3. **Cross Multiply**: - Cross multiplying gives: \[ \tan\left(\frac{\beta}{2}\right) \tan\left(\frac{\alpha}{2}\right) = \frac{1}{3} \] 4. **Using the Tangent Addition Formula**: - We can express \( \tan\left(\frac{\alpha + \beta}{2}\right) \) using the formula: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)} \] 5. **Substituting Values**: - Substitute \( \tan\left(\frac{\beta}{2}\right) \) into the formula: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) + \frac{1}{3\tan\left(\frac{\alpha}{2}\right)}}{1 - \frac{1}{3}} = \frac{\tan\left(\frac{\alpha}{2}\right) + \frac{1}{3\tan\left(\frac{\alpha}{2}\right)}}{\frac{2}{3}} \] 6. **Simplifying**: - Simplifying gives: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{3\left(\tan^2\left(\frac{\alpha}{2}\right) + \frac{1}{3}\right)}{2\tan\left(\frac{\alpha}{2}\right)} \] 7. **Using the Second Equation**: - The second equation can also be simplified using the same tangent identities. - Substitute \( \cot\left(\frac{\alpha}{2}\right) \) and \( \tan\left(\frac{\alpha}{2}\right) \) into the second equation: \[ \cot\left(\frac{\gamma}{2}\right) = \frac{1}{2}\left(3\tan\left(\frac{\alpha}{2}\right) + \frac{1}{\tan\left(\frac{\alpha}{2}\right)}\right) \] 8. **Combining Results**: - From both equations, we can derive that: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \cot\left(\frac{\gamma}{2}\right) \] - This implies: \[ \tan\left(\frac{\alpha + \beta}{2}\right) \tan\left(\frac{\gamma}{2}\right) = 1 \] 9. **Final Relation**: - The equation \( \tan\left(\frac{\alpha + \beta}{2}\right) \tan\left(\frac{\gamma}{2}\right) = 1 \) leads us to conclude that: \[ \frac{\alpha + \beta}{2} + \frac{\gamma}{2} = \frac{\pi}{2} \] - Therefore: \[ \alpha + \beta + \gamma = \pi \] 10. **Conclusion**: - The value of \( \alpha + \beta + \gamma \) is \( \pi \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

If cot(alpha+beta)=0\ ,\ then write the value of "sin"(alpha+2beta) .

If each of alpha, betaa n dgamma is a positive acute angle such that sin(alpha+beta-gamma) =1/2 , cos(beta+gamma-alpha)=1/2 and tan(gamma+alpha-beta)=1, find the values of alpha,betaa n dgammadot

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If "sin" alpha=ksinbeta then tan((alpha-beta)/(2)).cot((alpha+beta)/(2)) is equal to

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))