Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+………+C(...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+………+C_(n)x^(n) AA n in N` and `(C_(0)^(2))/(1)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+……..+(C_(n)^(2))/(n+1)=(lambda(2n+1)!)/((n+1)!)^(2),` then the vlaue of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) in the equation: \[ \frac{C_0^2}{1} + \frac{C_1^2}{2} + \frac{C_2^2}{3} + \ldots + \frac{C_n^2}{n+1} = \frac{\lambda (2n+1)!}{(n+1)!^2} \] where \( (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \). ### Step 1: Integrate the Binomial Expansion Start with the binomial expansion: \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] Integrate both sides with respect to \( x \): \[ \int (1+x)^n \, dx = \int (C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n) \, dx \] This gives: \[ \frac{(1+x)^{n+1}}{n+1} = C_0 \frac{x}{1} + C_1 \frac{x^2}{2} + C_2 \frac{x^3}{3} + \ldots + C_n \frac{x^{n+1}}{n+1} + C \] where \( C \) is the constant of integration. ### Step 2: Evaluate at \( x = 1 \) Now, evaluate both sides at \( x = 1 \): \[ \frac{(1+1)^{n+1}}{n+1} = C_0 \cdot 1 + C_1 \cdot \frac{1^2}{2} + C_2 \cdot \frac{1^3}{3} + \ldots + C_n \cdot \frac{1^{n+1}}{n+1} \] This simplifies to: \[ \frac{2^{n+1}}{n+1} = C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots + \frac{C_n}{n+1} \] ### Step 3: Multiply the Integrals Next, we multiply the original equation by itself: \[ \left( \int (1+x)^n \, dx \right)^2 = \left( C_0 \frac{x}{1} + C_1 \frac{x^2}{2} + \ldots + C_n \frac{x^{n+1}}{n+1} \right)^2 \] ### Step 4: Coefficient of \( x^{n+1} \) To find \( \lambda \), we need the coefficient of \( x^{n+1} \) from both sides. The left-hand side gives: \[ \frac{(1+x)^{2n+1}}{(n+1)^2} \] The coefficient of \( x^{n+1} \) in \( (1+x)^{2n+1} \) is given by \( \binom{2n+1}{n+1} \). ### Step 5: Set the Coefficients Equal Equating the coefficients from both sides, we have: \[ \frac{(2n+1)!}{(n+1)! \cdot n!} = \frac{\lambda (2n+1)!}{(n+1)!^2} \] ### Step 6: Solve for \( \lambda \) Cancelling \( (2n+1)! \) from both sides gives: \[ \frac{1}{n!} = \frac{\lambda}{(n+1)!} \] Cross-multiplying yields: \[ \lambda = \frac{(n+1)!}{n!} = n + 1 \] ### Final Result Thus, the value of \( \lambda \) is: \[ \lambda = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n) is equal to :

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)