Home
Class 12
MATHS
In interval [-(pi)/(2),(pi)/(2)], the eq...

In interval `[-(pi)/(2),(pi)/(2)]`, the equation ` log_(sin theta )( cos^(2) theta )=2 ` has

A

no solution

B

a unique solution

C

two solutions

D

infinite many solutions

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

In the interval [-pi/2,pi/2] the equation log_(sin theta)(cos 2 theta)=2 has

The function f(theta) = cos (pi sin^(2) theta) , is

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

For any theta epsilon((pi)/4,(pi)/2) the expression 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4sin^(6)theta equals:

Solve the equation for 0 le x le 2pi. 2 sin ^(2) theta = 3 cos theta

The number of values of theta in [(-3pi)/(2), (4pi)/(3)] which satisfies the system of equations. 2 sin^(2) theta + sin ^(2) 2 theta = 2 and sin 2 theta + cos 2 theta = tan theta is

Solve the equation for 0 le x le 2pi. sin theta cos theta = (1)/(2)

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

Solve the equation : 2sin^(2)theta+sin^(2)theta=2 for theta in (-pi,pi) .

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to